Cargando…
Deep learning-based high-throughput detection of in vitro germination to assess pollen viability from microscopic images
In vitro pollen germination is considered the most efficient method to assess pollen viability. The pollen germination frequency and pollen tube length, which are key indicators of pollen viability, should be accurately measured during in vitro culture. In this study, a Mask R-CNN model trained usin...
Autores principales: | Zhang, Mengwei, Zhao, Jianxiang, Hoshino, Yoichiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662222/ https://www.ncbi.nlm.nih.gov/pubmed/37584205 http://dx.doi.org/10.1093/jxb/erad315 |
Ejemplares similares
-
In Vitro Pollen Viability and Pollen Germination in Cherry Laurel (Prunus laurocerasus L.)
por: Sulusoglu, Melekber, et al.
Publicado: (2014) -
Optimization of In Vitro Germination, Viability Tests and Storage of Paeonia ostii Pollen
por: Li, Mengchen, et al.
Publicado: (2023) -
PollenDetect: An Open-Source Pollen Viability Status Recognition System Based on Deep Learning Neural Networks
por: Tan, Zhihao, et al.
Publicado: (2022) -
Detection and Recognition of Pollen Grains in Multilabel Microscopic Images
por: Kubera, Elżbieta, et al.
Publicado: (2022) -
The long pollen tube journey and in vitro pollen germination of Phalaenopsis orchids
por: Chen, Jhun-Chen, et al.
Publicado: (2016)