Cargando…

Self-supervised pre-training with contrastive and masked autoencoder methods for dealing with small datasets in deep learning for medical imaging

Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis. Training such deep learning models requires large and accurate datasets, with annotations for all training samples. However, in the medical imaging dom...

Descripción completa

Detalles Bibliográficos
Autores principales: Wolf, Daniel, Payer, Tristan, Lisson, Catharina Silvia, Lisson, Christoph Gerhard, Beer, Meinrad, Götz, Michael, Ropinski, Timo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662445/
https://www.ncbi.nlm.nih.gov/pubmed/37985685
http://dx.doi.org/10.1038/s41598-023-46433-0