Cargando…
Self-supervised pre-training with contrastive and masked autoencoder methods for dealing with small datasets in deep learning for medical imaging
Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis. Training such deep learning models requires large and accurate datasets, with annotations for all training samples. However, in the medical imaging dom...
Autores principales: | Wolf, Daniel, Payer, Tristan, Lisson, Catharina Silvia, Lisson, Christoph Gerhard, Beer, Meinrad, Götz, Michael, Ropinski, Timo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662445/ https://www.ncbi.nlm.nih.gov/pubmed/37985685 http://dx.doi.org/10.1038/s41598-023-46433-0 |
Ejemplares similares
-
Longitudinal CT Imaging to Explore the Predictive Power of 3D Radiomic Tumour Heterogeneity in Precise Imaging of Mantle Cell Lymphoma (MCL)
por: Lisson, Catharina Silvia, et al.
Publicado: (2022) -
Deep Neural Networks and Machine Learning Radiomics Modelling for Prediction of Relapse in Mantle Cell Lymphoma
por: Lisson, Catharina Silvia, et al.
Publicado: (2022) -
Extent of maxillary deficiency in patients with complete UCLP and BCLP
por: Lisson, Jörg A, et al.
Publicado: (2014) -
Improved semi-supervised autoencoder for deception detection
por: Fu, Hongliang, et al.
Publicado: (2019) -
Extracorporeal shockwave therapy: A systematic review of its use in fracture management
por: Petrisor, BA, et al.
Publicado: (2009)