Cargando…

Viral load of SARS-CoV-2 in surgical smoke in minimally invasive and open surgery: a single-center prospective clinical trial

At the beginning of the COVID-19 pandemic, it was assumed that SARS-CoV-2 could be transmitted through surgical smoke generated by electrocauterization. Minimally invasive surgery (MIS) was targeted due to potentially higher concentrations of the SARS-CoV-2 particles in the pneumoperitoneum. Some su...

Descripción completa

Detalles Bibliográficos
Autores principales: Cizmic, Amila, Eichel, Vanessa M., Weidner, Niklas M., Wise, Philipp A., Müller, Felix, Rompen, Ingmar F., Bartenschlager, Ralf, Schnitzler, Paul, Nickel, Felix, Müller-Stich, Beat P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662446/
https://www.ncbi.nlm.nih.gov/pubmed/37985848
http://dx.doi.org/10.1038/s41598-023-47058-z
Descripción
Sumario:At the beginning of the COVID-19 pandemic, it was assumed that SARS-CoV-2 could be transmitted through surgical smoke generated by electrocauterization. Minimally invasive surgery (MIS) was targeted due to potentially higher concentrations of the SARS-CoV-2 particles in the pneumoperitoneum. Some surgical societies even recommended open surgery instead of MIS to prevent the potential spread of SARS-CoV-2 from the pneumoperitoneum. This study aimed to detect SARS-CoV-2 in surgical smoke during open and MIS. Patients with SARS-CoV-2 infection who underwent open surgery or MIS at Heidelberg University Hospital were included in the study. A control group of patients without SARS-CoV-2 infection undergoing MIS or open surgery was included for comparison. The trial was approved by the Ethics Committee of Heidelberg University Medical School (S-098/2021). The following samples were collected: nasopharyngeal and intraabdominal swabs, blood, urine, surgical smoke, and air samples from the operating room. An SKC BioSampler was used to sample the surgical smoke from the pneumoperitoneum during MIS and the approximate surgical field during open surgery in 15 ml of sterilized phosphate-buffered saline. An RT-PCR test was performed on all collected samples to detect SARS-CoV-2 viral particles. Twelve patients with proven SARS-CoV-2 infection underwent open abdominal surgery. Two SARS-CoV-2-positive patients underwent an MIS procedure. The control group included 24 patients: 12 underwent open surgery and 12 MIS. One intraabdominal swab in a patient with SARS-CoV-2 infection was positive for SARS-CoV-2. However, during both open surgery and MIS, none of the surgical smoke samples showed any detectable viral particles of SARS-CoV-2. The air samples collected at the end of the surgical procedure showed no viral particles of SARS-CoV-2. Major complications (CD ≥ IIIa) were more often observed in SARS-CoV-2 positive patients (10 vs. 4, p = 0.001). This study showed no detectable viral particles of SARS-CoV-2 in surgical smoke sampled during MIS and open surgery. Thus, the discussed risk of transmission of SARS-CoV-2 via surgical smoke could not be confirmed in the present study.