Cargando…

Elevated rates of dietary generalization in eusocial lineages of the secondarily herbivorous bees

BACKGROUND: Within the Hymenoptera, bees are notable for their relationship with flowering plants, being almost entirely dependent on plant pollen and nectar. Though functionally herbivorous, as a result of their role as pollinators, bees have received comparatively little attention as models for in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wood, T. J., Müller, A., Praz, C., Michez, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662511/
https://www.ncbi.nlm.nih.gov/pubmed/37986035
http://dx.doi.org/10.1186/s12862-023-02175-1
Descripción
Sumario:BACKGROUND: Within the Hymenoptera, bees are notable for their relationship with flowering plants, being almost entirely dependent on plant pollen and nectar. Though functionally herbivorous, as a result of their role as pollinators, bees have received comparatively little attention as models for insect herbivory. Bees often display dietary specialization, but quantitative comparison against other herbivorous insects has not previously been conducted. RESULTS: In the most comprehensive analysis to date for 860 bee species, dietary specialization amounted to 50.1% of studied species collecting pollen from between 1 and 2 botanical families with a relatively long tail of dietary generalists, with 11.1% of species collecting from more than 10 botanical families. This distribution deviated from the truncated Pareto distribution of dietary breadth seen in other herbivorous insect lineages. However, this deviation was predominantly due to eusocial bee lineages, which show a range of dietary breadths that conformed to a normal distribution, while solitary bees show a typical truncated distribution not strongly different from other herbivorous insects. We hypothesize that the relatively low level of dietary specialization in bees as a whole reflects the relaxation of the constraints typically observed in herbivorous insects with a comparatively reduced importance of plant chemistry and comparatively increased importance of phenology and foraging efficiency. The long flight periods of eusocial bees that are necessary to allow overlapping generations both allows and necessitates the use of multiple flowering resources, whereas solitary bees with short flight periods have more limited access to varied resources within a constrained activity period. CONCLUSIONS: Collectively, solitary bees show slightly lower specialization compared to other herbivorous insects, possibly due to their balanced relationship with plants, rather than direct antagonism such as seen in the direct consumption of plant tissues. An additional factor may be the mediocre diversity of bees at low latitudes combined with low levels of dietary specialization, whereas these areas typically display a high rate of specialization by herbivorous insects in general. Though the most important factors structuring dietary specialization in bees appear to differ from many other herbivorous insects, solitary bees show a surprisingly similar overall pattern of dietary specialization. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12862-023-02175-1.