Cargando…
A Comprehensive Machine Learning Benchmark Study for Radiomics-Based Survival Analysis of CT Imaging Data in Patients With Hepatic Metastases of CRC
OBJECTIVES: Optimizing a machine learning (ML) pipeline for radiomics analysis involves numerous choices in data set composition, preprocessing, and model selection. Objective identification of the optimal setup is complicated by correlated features, interdependency structures, and a multitude of av...
Autores principales: | Stüber, Anna Theresa, Coors, Stefan, Schachtner, Balthasar, Weber, Tobias, Rügamer, David, Bender, Andreas, Mittermeier, Andreas, Öcal, Osman, Seidensticker, Max, Ricke, Jens, Bischl, Bernd, Ingrisch, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662603/ https://www.ncbi.nlm.nih.gov/pubmed/37504498 http://dx.doi.org/10.1097/RLI.0000000000001009 |
Ejemplares similares
-
Automated localization of the medial clavicular epiphyseal cartilages using an object detection network: a step towards deep learning-based forensic age assessment
por: Wesp, Philipp, et al.
Publicado: (2023) -
Performance variability of radiomics machine learning models for the detection of clinically significant prostate cancer in heterogeneous MRI datasets
por: Gresser, Eva, et al.
Publicado: (2022) -
Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism
por: Mansour, Nabeel, et al.
Publicado: (2023) -
Bi-Centric Independent Validation of Outcome Prediction after Radioembolization of Primary and Secondary Liver Cancer
por: Fabritius, Matthias Philipp, et al.
Publicado: (2021) -
Reproducibility of CT-Based Hepatocellular Carcinoma Radiomic Features across Different Contrast Imaging Phases: A Proof of Concept on SORAMIC Trial Data
por: Ibrahim, Abdalla, et al.
Publicado: (2021)