Cargando…
A MACHINE LEARNING MODEL DERIVED FROM ANALYSIS OF TIME-COURSE GENE-EXPRESSION DATASETS REVEALS TEMPORALLY STABLE GENE MARKERS PREDICTIVE OF SEPSIS MORTALITY
Sepsis is associated with significant mortality and morbidity among critically ill patients admitted to intensive care units and represents a major health challenge globally. Given the significant clinical and biological heterogeneity among patients and the dynamic nature of the host immune response...
Autores principales: | Huang, Min, Atreya, Mihir R., Holder, Andre, Kamaleswaran, Rishikesan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662606/ https://www.ncbi.nlm.nih.gov/pubmed/37752077 http://dx.doi.org/10.1097/SHK.0000000000002226 |
Ejemplares similares
-
U-SHAPED ASSOCIATION BETWEEN SERUM CALCIUM LEVELS AND 28-DAY MORTALITY IN PATIENTS WITH SEPSIS: A RETROSPECTIVE ANALYSIS OF THE MIMIC-III DATABASE
por: Yan, Danyang, et al.
Publicado: (2023) -
A TRANSCRIPTOMIC APPRECIATION OF CHILDHOOD MENINGOCOCCAL AND POLYMICROBIAL SEPSIS FROM A PRO-INFLAMMATORY AND TRAJECTORIAL PERSPECTIVE, A ROLE FOR VASCULAR ENDOTHELIAL GROWTH FACTOR A AND B MODULATION?
por: Rashid, Asrar, et al.
Publicado: (2023) -
Machine Learning Identifies Complicated Sepsis Course and Subsequent Mortality Based on 20 Genes in Peripheral Blood Immune Cells at 24 H Post-ICU Admission
por: Banerjee, Shayantan, et al.
Publicado: (2021) -
Commentary: ‘Critical illness subclasses: all roads lead to Rome’
por: Atreya, Mihir R., et al.
Publicado: (2022) -
Machine Learning Methods to Predict Acute Respiratory Failure and Acute Respiratory Distress Syndrome
por: Wong, An-Kwok Ian, et al.
Publicado: (2020)