Cargando…

Mechanisms of main components in Curcuma longa L. on hepatic fibrosis based on network pharmacology and molecular docking: A review

Hepatic fibrosis is a great concern in public health. While effective drugs for its treatment are lacking, Curcuma longa L. (CL) has been reported as a promising therapeutic. We aimed to uncover the core components and mechanisms of CL against hepatic fibrosis via a network pharmacology approach. ME...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Qiang, Zhu, Jiahui, Zhang, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662913/
https://www.ncbi.nlm.nih.gov/pubmed/37478207
http://dx.doi.org/10.1097/MD.0000000000034353
_version_ 1785138301863198720
author Han, Qiang
Zhu, Jiahui
Zhang, Peng
author_facet Han, Qiang
Zhu, Jiahui
Zhang, Peng
author_sort Han, Qiang
collection PubMed
description Hepatic fibrosis is a great concern in public health. While effective drugs for its treatment are lacking, Curcuma longa L. (CL) has been reported as a promising therapeutic. We aimed to uncover the core components and mechanisms of CL against hepatic fibrosis via a network pharmacology approach. METHODS: The main components of CL were obtained and screened. While targets of components and disease were respectively collected using SwissTargetPrediction and online databases, common targets were assessed. A protein–protein interaction (PPI) network was constructed, and core targets were identified. GO and KEGG pathway enrichment analyses were performed, and molecular docking was conducted to validate the binding of core components in CL on predicted core targets. RESULTS: Nine main components from CL based on high-performance liquid chromatography (HPLC) and 63 anti-fibrosis targets were identified, and a PPI network and a component target-disease target network were constructed. Apigenin, quercetin, demethoxycurcumin, and curcumin are likely to become key phenolic-based components and curcuminoids for the treatment of hepatic fibrosis, respectively. KEGG pathway enrichment analysis revealed that the HIF-1 signaling pathway (hsa04066) was most significantly enriched. Considering core targets of the PPI network and a network of the common targets and pathways enriched, AKT1, MAPK1, EGFR, MTOR, and SRC may be the core potential targets of CL against hepatic fibrosis. Molecular docking was carried out to verify the binding of above core components to core targets. CONCLUSIONS: The therapeutic effect of CL on hepatic fibrosis may be attributed to multi-components, multi-targets, and multi-pathways.
format Online
Article
Text
id pubmed-10662913
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-106629132023-07-21 Mechanisms of main components in Curcuma longa L. on hepatic fibrosis based on network pharmacology and molecular docking: A review Han, Qiang Zhu, Jiahui Zhang, Peng Medicine (Baltimore) 3800 Hepatic fibrosis is a great concern in public health. While effective drugs for its treatment are lacking, Curcuma longa L. (CL) has been reported as a promising therapeutic. We aimed to uncover the core components and mechanisms of CL against hepatic fibrosis via a network pharmacology approach. METHODS: The main components of CL were obtained and screened. While targets of components and disease were respectively collected using SwissTargetPrediction and online databases, common targets were assessed. A protein–protein interaction (PPI) network was constructed, and core targets were identified. GO and KEGG pathway enrichment analyses were performed, and molecular docking was conducted to validate the binding of core components in CL on predicted core targets. RESULTS: Nine main components from CL based on high-performance liquid chromatography (HPLC) and 63 anti-fibrosis targets were identified, and a PPI network and a component target-disease target network were constructed. Apigenin, quercetin, demethoxycurcumin, and curcumin are likely to become key phenolic-based components and curcuminoids for the treatment of hepatic fibrosis, respectively. KEGG pathway enrichment analysis revealed that the HIF-1 signaling pathway (hsa04066) was most significantly enriched. Considering core targets of the PPI network and a network of the common targets and pathways enriched, AKT1, MAPK1, EGFR, MTOR, and SRC may be the core potential targets of CL against hepatic fibrosis. Molecular docking was carried out to verify the binding of above core components to core targets. CONCLUSIONS: The therapeutic effect of CL on hepatic fibrosis may be attributed to multi-components, multi-targets, and multi-pathways. Lippincott Williams & Wilkins 2023-07-21 /pmc/articles/PMC10662913/ /pubmed/37478207 http://dx.doi.org/10.1097/MD.0000000000034353 Text en Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY) (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle 3800
Han, Qiang
Zhu, Jiahui
Zhang, Peng
Mechanisms of main components in Curcuma longa L. on hepatic fibrosis based on network pharmacology and molecular docking: A review
title Mechanisms of main components in Curcuma longa L. on hepatic fibrosis based on network pharmacology and molecular docking: A review
title_full Mechanisms of main components in Curcuma longa L. on hepatic fibrosis based on network pharmacology and molecular docking: A review
title_fullStr Mechanisms of main components in Curcuma longa L. on hepatic fibrosis based on network pharmacology and molecular docking: A review
title_full_unstemmed Mechanisms of main components in Curcuma longa L. on hepatic fibrosis based on network pharmacology and molecular docking: A review
title_short Mechanisms of main components in Curcuma longa L. on hepatic fibrosis based on network pharmacology and molecular docking: A review
title_sort mechanisms of main components in curcuma longa l. on hepatic fibrosis based on network pharmacology and molecular docking: a review
topic 3800
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662913/
https://www.ncbi.nlm.nih.gov/pubmed/37478207
http://dx.doi.org/10.1097/MD.0000000000034353
work_keys_str_mv AT hanqiang mechanismsofmaincomponentsincurcumalongalonhepaticfibrosisbasedonnetworkpharmacologyandmoleculardockingareview
AT zhujiahui mechanismsofmaincomponentsincurcumalongalonhepaticfibrosisbasedonnetworkpharmacologyandmoleculardockingareview
AT zhangpeng mechanismsofmaincomponentsincurcumalongalonhepaticfibrosisbasedonnetworkpharmacologyandmoleculardockingareview