Cargando…

Single-cell RNA sequencing unravels the transcriptional network underlying zebrafish retina regeneration

In the lesioned zebrafish retina, Müller glia produce multipotent retinal progenitors that generate all retinal neurons, replacing lost cell types. To study the molecular mechanisms linking Müller glia reactivity to progenitor production and neuronal differentiation, we used single-cell RNA sequenci...

Descripción completa

Detalles Bibliográficos
Autores principales: Celotto, Laura, Rost, Fabian, Machate, Anja, Bläsche, Juliane, Dahl, Andreas, Weber, Anke, Hans, Stefan, Brand, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662954/
https://www.ncbi.nlm.nih.gov/pubmed/37988404
http://dx.doi.org/10.7554/eLife.86507
_version_ 1785148615630520320
author Celotto, Laura
Rost, Fabian
Machate, Anja
Bläsche, Juliane
Dahl, Andreas
Weber, Anke
Hans, Stefan
Brand, Michael
author_facet Celotto, Laura
Rost, Fabian
Machate, Anja
Bläsche, Juliane
Dahl, Andreas
Weber, Anke
Hans, Stefan
Brand, Michael
author_sort Celotto, Laura
collection PubMed
description In the lesioned zebrafish retina, Müller glia produce multipotent retinal progenitors that generate all retinal neurons, replacing lost cell types. To study the molecular mechanisms linking Müller glia reactivity to progenitor production and neuronal differentiation, we used single-cell RNA sequencing of Müller glia, progenitors and regenerated progeny from uninjured and light-lesioned retinae. We discover an injury-induced Müller glia differentiation trajectory that leads into a cell population with a hybrid identity expressing marker genes of Müller glia and progenitors. A glial self-renewal and a neurogenic trajectory depart from the hybrid cell population. We further observe that neurogenic progenitors progressively differentiate to generate retinal ganglion cells first and bipolar cells last, similar to the events observed during retinal development. Our work provides a comprehensive description of Müller glia and progenitor transcriptional changes and fate decisions in the regenerating retina, which are key to tailor cell differentiation and replacement therapies for retinal dystrophies in humans.
format Online
Article
Text
id pubmed-10662954
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-106629542023-11-21 Single-cell RNA sequencing unravels the transcriptional network underlying zebrafish retina regeneration Celotto, Laura Rost, Fabian Machate, Anja Bläsche, Juliane Dahl, Andreas Weber, Anke Hans, Stefan Brand, Michael eLife Developmental Biology In the lesioned zebrafish retina, Müller glia produce multipotent retinal progenitors that generate all retinal neurons, replacing lost cell types. To study the molecular mechanisms linking Müller glia reactivity to progenitor production and neuronal differentiation, we used single-cell RNA sequencing of Müller glia, progenitors and regenerated progeny from uninjured and light-lesioned retinae. We discover an injury-induced Müller glia differentiation trajectory that leads into a cell population with a hybrid identity expressing marker genes of Müller glia and progenitors. A glial self-renewal and a neurogenic trajectory depart from the hybrid cell population. We further observe that neurogenic progenitors progressively differentiate to generate retinal ganglion cells first and bipolar cells last, similar to the events observed during retinal development. Our work provides a comprehensive description of Müller glia and progenitor transcriptional changes and fate decisions in the regenerating retina, which are key to tailor cell differentiation and replacement therapies for retinal dystrophies in humans. eLife Sciences Publications, Ltd 2023-11-21 /pmc/articles/PMC10662954/ /pubmed/37988404 http://dx.doi.org/10.7554/eLife.86507 Text en © 2023, Celotto et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Developmental Biology
Celotto, Laura
Rost, Fabian
Machate, Anja
Bläsche, Juliane
Dahl, Andreas
Weber, Anke
Hans, Stefan
Brand, Michael
Single-cell RNA sequencing unravels the transcriptional network underlying zebrafish retina regeneration
title Single-cell RNA sequencing unravels the transcriptional network underlying zebrafish retina regeneration
title_full Single-cell RNA sequencing unravels the transcriptional network underlying zebrafish retina regeneration
title_fullStr Single-cell RNA sequencing unravels the transcriptional network underlying zebrafish retina regeneration
title_full_unstemmed Single-cell RNA sequencing unravels the transcriptional network underlying zebrafish retina regeneration
title_short Single-cell RNA sequencing unravels the transcriptional network underlying zebrafish retina regeneration
title_sort single-cell rna sequencing unravels the transcriptional network underlying zebrafish retina regeneration
topic Developmental Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662954/
https://www.ncbi.nlm.nih.gov/pubmed/37988404
http://dx.doi.org/10.7554/eLife.86507
work_keys_str_mv AT celottolaura singlecellrnasequencingunravelsthetranscriptionalnetworkunderlyingzebrafishretinaregeneration
AT rostfabian singlecellrnasequencingunravelsthetranscriptionalnetworkunderlyingzebrafishretinaregeneration
AT machateanja singlecellrnasequencingunravelsthetranscriptionalnetworkunderlyingzebrafishretinaregeneration
AT blaschejuliane singlecellrnasequencingunravelsthetranscriptionalnetworkunderlyingzebrafishretinaregeneration
AT dahlandreas singlecellrnasequencingunravelsthetranscriptionalnetworkunderlyingzebrafishretinaregeneration
AT weberanke singlecellrnasequencingunravelsthetranscriptionalnetworkunderlyingzebrafishretinaregeneration
AT hansstefan singlecellrnasequencingunravelsthetranscriptionalnetworkunderlyingzebrafishretinaregeneration
AT brandmichael singlecellrnasequencingunravelsthetranscriptionalnetworkunderlyingzebrafishretinaregeneration