Cargando…
Detection of breakage and impurity ratios for raw sugarcane based on estimation model and MDSC-DeepLabv3+
Broken cane and impurities such as top, leaf in harvested raw sugarcane significantly influence the yield of the sugar manufacturing process. It is crucial to determine the breakage and impurity ratios for assessing the quality and price of raw sugarcane in sugar refineries. However, the traditional...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663215/ https://www.ncbi.nlm.nih.gov/pubmed/38023873 http://dx.doi.org/10.3389/fpls.2023.1283230 |
_version_ | 1785138349128810496 |
---|---|
author | Li, Xin Zhang, Zhigang Lv, Shengping Liang, Tairan Zou, Jianmin Ning, Taotao Jiang, Chunyu |
author_facet | Li, Xin Zhang, Zhigang Lv, Shengping Liang, Tairan Zou, Jianmin Ning, Taotao Jiang, Chunyu |
author_sort | Li, Xin |
collection | PubMed |
description | Broken cane and impurities such as top, leaf in harvested raw sugarcane significantly influence the yield of the sugar manufacturing process. It is crucial to determine the breakage and impurity ratios for assessing the quality and price of raw sugarcane in sugar refineries. However, the traditional manual sampling approach for detecting breakage and impurity ratios suffers from subjectivity, low efficiency, and result discrepancies. To address this problem, a novel approach combining an estimation model and semantic segmentation method for breakage and impurity ratios detection was developed. A machine vision-based image acquisition platform was designed, and custom image and mass datasets of cane, broken cane, top, and leaf were created. For cane, broken cane, top, and leaf, normal fitting of mean surface densities based on pixel information and measured mass was conducted. An estimation model for the mass of each class and the breakage and impurity ratios was established using the mean surface density and pixels. Furthermore, the MDSC-DeepLabv3+ model was developed to accurately and efficiently segment pixels of the four classes of objects. This model integrates improved MobileNetv2, atrous spatial pyramid pooling with deepwise separable convolution and strip pooling module, and coordinate attention mechanism to achieve high segmentation accuracy, deployability, and efficiency simultaneously. Experimental results based on the custom image and mass datasets showed that the estimation model achieved high accuracy for breakage and impurity ratios between estimated and measured value with R(2) values of 0.976 and 0.968, respectively. MDSC-DeepLabv3+ outperformed the compared models with mPA and mIoU of 97.55% and 94.84%, respectively. Compared to the baseline DeepLabv3+, MDSC-DeepLabv3+ demonstrated significant improvements in mPA and mIoU and reduced Params, FLOPs, and inference time, making it suitable for deployment on edge devices and real-time inference. The average relative errors of breakage and impurity ratios between estimated and measured values were 11.3% and 6.5%, respectively. Overall, this novel approach enables high-precision, efficient, and intelligent detection of breakage and impurity ratios for raw sugarcane. |
format | Online Article Text |
id | pubmed-10663215 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106632152023-01-01 Detection of breakage and impurity ratios for raw sugarcane based on estimation model and MDSC-DeepLabv3+ Li, Xin Zhang, Zhigang Lv, Shengping Liang, Tairan Zou, Jianmin Ning, Taotao Jiang, Chunyu Front Plant Sci Plant Science Broken cane and impurities such as top, leaf in harvested raw sugarcane significantly influence the yield of the sugar manufacturing process. It is crucial to determine the breakage and impurity ratios for assessing the quality and price of raw sugarcane in sugar refineries. However, the traditional manual sampling approach for detecting breakage and impurity ratios suffers from subjectivity, low efficiency, and result discrepancies. To address this problem, a novel approach combining an estimation model and semantic segmentation method for breakage and impurity ratios detection was developed. A machine vision-based image acquisition platform was designed, and custom image and mass datasets of cane, broken cane, top, and leaf were created. For cane, broken cane, top, and leaf, normal fitting of mean surface densities based on pixel information and measured mass was conducted. An estimation model for the mass of each class and the breakage and impurity ratios was established using the mean surface density and pixels. Furthermore, the MDSC-DeepLabv3+ model was developed to accurately and efficiently segment pixels of the four classes of objects. This model integrates improved MobileNetv2, atrous spatial pyramid pooling with deepwise separable convolution and strip pooling module, and coordinate attention mechanism to achieve high segmentation accuracy, deployability, and efficiency simultaneously. Experimental results based on the custom image and mass datasets showed that the estimation model achieved high accuracy for breakage and impurity ratios between estimated and measured value with R(2) values of 0.976 and 0.968, respectively. MDSC-DeepLabv3+ outperformed the compared models with mPA and mIoU of 97.55% and 94.84%, respectively. Compared to the baseline DeepLabv3+, MDSC-DeepLabv3+ demonstrated significant improvements in mPA and mIoU and reduced Params, FLOPs, and inference time, making it suitable for deployment on edge devices and real-time inference. The average relative errors of breakage and impurity ratios between estimated and measured values were 11.3% and 6.5%, respectively. Overall, this novel approach enables high-precision, efficient, and intelligent detection of breakage and impurity ratios for raw sugarcane. Frontiers Media S.A. 2023-11-08 /pmc/articles/PMC10663215/ /pubmed/38023873 http://dx.doi.org/10.3389/fpls.2023.1283230 Text en Copyright © 2023 Li, Zhang, Lv, Liang, Zou, Ning and Jiang https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Li, Xin Zhang, Zhigang Lv, Shengping Liang, Tairan Zou, Jianmin Ning, Taotao Jiang, Chunyu Detection of breakage and impurity ratios for raw sugarcane based on estimation model and MDSC-DeepLabv3+ |
title | Detection of breakage and impurity ratios for raw sugarcane based on estimation model and MDSC-DeepLabv3+ |
title_full | Detection of breakage and impurity ratios for raw sugarcane based on estimation model and MDSC-DeepLabv3+ |
title_fullStr | Detection of breakage and impurity ratios for raw sugarcane based on estimation model and MDSC-DeepLabv3+ |
title_full_unstemmed | Detection of breakage and impurity ratios for raw sugarcane based on estimation model and MDSC-DeepLabv3+ |
title_short | Detection of breakage and impurity ratios for raw sugarcane based on estimation model and MDSC-DeepLabv3+ |
title_sort | detection of breakage and impurity ratios for raw sugarcane based on estimation model and mdsc-deeplabv3+ |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663215/ https://www.ncbi.nlm.nih.gov/pubmed/38023873 http://dx.doi.org/10.3389/fpls.2023.1283230 |
work_keys_str_mv | AT lixin detectionofbreakageandimpurityratiosforrawsugarcanebasedonestimationmodelandmdscdeeplabv3 AT zhangzhigang detectionofbreakageandimpurityratiosforrawsugarcanebasedonestimationmodelandmdscdeeplabv3 AT lvshengping detectionofbreakageandimpurityratiosforrawsugarcanebasedonestimationmodelandmdscdeeplabv3 AT liangtairan detectionofbreakageandimpurityratiosforrawsugarcanebasedonestimationmodelandmdscdeeplabv3 AT zoujianmin detectionofbreakageandimpurityratiosforrawsugarcanebasedonestimationmodelandmdscdeeplabv3 AT ningtaotao detectionofbreakageandimpurityratiosforrawsugarcanebasedonestimationmodelandmdscdeeplabv3 AT jiangchunyu detectionofbreakageandimpurityratiosforrawsugarcanebasedonestimationmodelandmdscdeeplabv3 |