Cargando…
Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts
INTRODUCTION: The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and incre...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663260/ https://www.ncbi.nlm.nih.gov/pubmed/38022684 http://dx.doi.org/10.3389/fimmu.2023.1259197 |
_version_ | 1785138359684825088 |
---|---|
author | Gonzalez Dias Carvalho, Patrícia Conceição Dominguez Crespo Hirata, Thiago Mano Alves, Leandro Yukio Moscardini, Isabelle Franco do Nascimento, Ana Paula Barbosa Costa-Martins, André G. Sorgi, Sara Harandi, Ali M. Ferreira, Daniela M. Vianello, Eleonora Haks, Mariëlle C. Ottenhoff, Tom H. M. Santoro, Francesco Martinez-Murillo, Paola Huttner, Angela Siegrist, Claire-Anne Medaglini, Donata Nakaya, Helder I. |
author_facet | Gonzalez Dias Carvalho, Patrícia Conceição Dominguez Crespo Hirata, Thiago Mano Alves, Leandro Yukio Moscardini, Isabelle Franco do Nascimento, Ana Paula Barbosa Costa-Martins, André G. Sorgi, Sara Harandi, Ali M. Ferreira, Daniela M. Vianello, Eleonora Haks, Mariëlle C. Ottenhoff, Tom H. M. Santoro, Francesco Martinez-Murillo, Paola Huttner, Angela Siegrist, Claire-Anne Medaglini, Donata Nakaya, Helder I. |
author_sort | Gonzalez Dias Carvalho, Patrícia Conceição |
collection | PubMed |
description | INTRODUCTION: The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and increase our understanding of the molecular factors associated with such adverse events. METHODS: In this study, we developed a machine learning approach to integrate prevaccination gene expression data with adverse events that occurred within 14 days post-vaccination. RESULTS AND DISCUSSION: We analyzed the expression of 144 genes across 343 blood samples collected from participants of 4 phase I clinical trial cohorts: Switzerland, USA, Gabon, and Kenya. Our machine learning approach revealed 22 key genes associated with adverse events such as local reactions, fatigue, headache, myalgia, fever, chills, arthralgia, nausea, and arthritis, providing insights into potential biological mechanisms linked to vaccine reactogenicity. |
format | Online Article Text |
id | pubmed-10663260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106632602023-01-01 Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts Gonzalez Dias Carvalho, Patrícia Conceição Dominguez Crespo Hirata, Thiago Mano Alves, Leandro Yukio Moscardini, Isabelle Franco do Nascimento, Ana Paula Barbosa Costa-Martins, André G. Sorgi, Sara Harandi, Ali M. Ferreira, Daniela M. Vianello, Eleonora Haks, Mariëlle C. Ottenhoff, Tom H. M. Santoro, Francesco Martinez-Murillo, Paola Huttner, Angela Siegrist, Claire-Anne Medaglini, Donata Nakaya, Helder I. Front Immunol Immunology INTRODUCTION: The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and increase our understanding of the molecular factors associated with such adverse events. METHODS: In this study, we developed a machine learning approach to integrate prevaccination gene expression data with adverse events that occurred within 14 days post-vaccination. RESULTS AND DISCUSSION: We analyzed the expression of 144 genes across 343 blood samples collected from participants of 4 phase I clinical trial cohorts: Switzerland, USA, Gabon, and Kenya. Our machine learning approach revealed 22 key genes associated with adverse events such as local reactions, fatigue, headache, myalgia, fever, chills, arthralgia, nausea, and arthritis, providing insights into potential biological mechanisms linked to vaccine reactogenicity. Frontiers Media S.A. 2023-11-08 /pmc/articles/PMC10663260/ /pubmed/38022684 http://dx.doi.org/10.3389/fimmu.2023.1259197 Text en Copyright © 2023 Gonzalez Dias Carvalho, Dominguez Crespo Hirata, Mano Alves, Moscardini, do Nascimento, Costa-Martins, Sorgi, Harandi, Ferreira, Vianello, Haks, Ottenhoff, Santoro, Martinez-Murillo, Huttner, Siegrist, Medaglini and Nakaya https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Gonzalez Dias Carvalho, Patrícia Conceição Dominguez Crespo Hirata, Thiago Mano Alves, Leandro Yukio Moscardini, Isabelle Franco do Nascimento, Ana Paula Barbosa Costa-Martins, André G. Sorgi, Sara Harandi, Ali M. Ferreira, Daniela M. Vianello, Eleonora Haks, Mariëlle C. Ottenhoff, Tom H. M. Santoro, Francesco Martinez-Murillo, Paola Huttner, Angela Siegrist, Claire-Anne Medaglini, Donata Nakaya, Helder I. Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts |
title | Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts |
title_full | Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts |
title_fullStr | Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts |
title_full_unstemmed | Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts |
title_short | Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts |
title_sort | baseline gene signatures of reactogenicity to ebola vaccination: a machine learning approach across multiple cohorts |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663260/ https://www.ncbi.nlm.nih.gov/pubmed/38022684 http://dx.doi.org/10.3389/fimmu.2023.1259197 |
work_keys_str_mv | AT gonzalezdiascarvalhopatriciaconceicao baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT dominguezcrespohiratathiago baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT manoalvesleandroyukio baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT moscardiniisabellefranco baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT donascimentoanapaulabarbosa baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT costamartinsandreg baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT sorgisara baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT harandialim baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT ferreiradanielam baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT vianelloeleonora baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT haksmariellec baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT ottenhofftomhm baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT santorofrancesco baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT martinezmurillopaola baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT huttnerangela baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT siegristclaireanne baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT medaglinidonata baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts AT nakayahelderi baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts |