Cargando…

Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts

INTRODUCTION: The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and incre...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonzalez Dias Carvalho, Patrícia Conceição, Dominguez Crespo Hirata, Thiago, Mano Alves, Leandro Yukio, Moscardini, Isabelle Franco, do Nascimento, Ana Paula Barbosa, Costa-Martins, André G., Sorgi, Sara, Harandi, Ali M., Ferreira, Daniela M., Vianello, Eleonora, Haks, Mariëlle C., Ottenhoff, Tom H. M., Santoro, Francesco, Martinez-Murillo, Paola, Huttner, Angela, Siegrist, Claire-Anne, Medaglini, Donata, Nakaya, Helder I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663260/
https://www.ncbi.nlm.nih.gov/pubmed/38022684
http://dx.doi.org/10.3389/fimmu.2023.1259197
_version_ 1785138359684825088
author Gonzalez Dias Carvalho, Patrícia Conceição
Dominguez Crespo Hirata, Thiago
Mano Alves, Leandro Yukio
Moscardini, Isabelle Franco
do Nascimento, Ana Paula Barbosa
Costa-Martins, André G.
Sorgi, Sara
Harandi, Ali M.
Ferreira, Daniela M.
Vianello, Eleonora
Haks, Mariëlle C.
Ottenhoff, Tom H. M.
Santoro, Francesco
Martinez-Murillo, Paola
Huttner, Angela
Siegrist, Claire-Anne
Medaglini, Donata
Nakaya, Helder I.
author_facet Gonzalez Dias Carvalho, Patrícia Conceição
Dominguez Crespo Hirata, Thiago
Mano Alves, Leandro Yukio
Moscardini, Isabelle Franco
do Nascimento, Ana Paula Barbosa
Costa-Martins, André G.
Sorgi, Sara
Harandi, Ali M.
Ferreira, Daniela M.
Vianello, Eleonora
Haks, Mariëlle C.
Ottenhoff, Tom H. M.
Santoro, Francesco
Martinez-Murillo, Paola
Huttner, Angela
Siegrist, Claire-Anne
Medaglini, Donata
Nakaya, Helder I.
author_sort Gonzalez Dias Carvalho, Patrícia Conceição
collection PubMed
description INTRODUCTION: The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and increase our understanding of the molecular factors associated with such adverse events. METHODS: In this study, we developed a machine learning approach to integrate prevaccination gene expression data with adverse events that occurred within 14 days post-vaccination. RESULTS AND DISCUSSION: We analyzed the expression of 144 genes across 343 blood samples collected from participants of 4 phase I clinical trial cohorts: Switzerland, USA, Gabon, and Kenya. Our machine learning approach revealed 22 key genes associated with adverse events such as local reactions, fatigue, headache, myalgia, fever, chills, arthralgia, nausea, and arthritis, providing insights into potential biological mechanisms linked to vaccine reactogenicity.
format Online
Article
Text
id pubmed-10663260
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-106632602023-01-01 Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts Gonzalez Dias Carvalho, Patrícia Conceição Dominguez Crespo Hirata, Thiago Mano Alves, Leandro Yukio Moscardini, Isabelle Franco do Nascimento, Ana Paula Barbosa Costa-Martins, André G. Sorgi, Sara Harandi, Ali M. Ferreira, Daniela M. Vianello, Eleonora Haks, Mariëlle C. Ottenhoff, Tom H. M. Santoro, Francesco Martinez-Murillo, Paola Huttner, Angela Siegrist, Claire-Anne Medaglini, Donata Nakaya, Helder I. Front Immunol Immunology INTRODUCTION: The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and increase our understanding of the molecular factors associated with such adverse events. METHODS: In this study, we developed a machine learning approach to integrate prevaccination gene expression data with adverse events that occurred within 14 days post-vaccination. RESULTS AND DISCUSSION: We analyzed the expression of 144 genes across 343 blood samples collected from participants of 4 phase I clinical trial cohorts: Switzerland, USA, Gabon, and Kenya. Our machine learning approach revealed 22 key genes associated with adverse events such as local reactions, fatigue, headache, myalgia, fever, chills, arthralgia, nausea, and arthritis, providing insights into potential biological mechanisms linked to vaccine reactogenicity. Frontiers Media S.A. 2023-11-08 /pmc/articles/PMC10663260/ /pubmed/38022684 http://dx.doi.org/10.3389/fimmu.2023.1259197 Text en Copyright © 2023 Gonzalez Dias Carvalho, Dominguez Crespo Hirata, Mano Alves, Moscardini, do Nascimento, Costa-Martins, Sorgi, Harandi, Ferreira, Vianello, Haks, Ottenhoff, Santoro, Martinez-Murillo, Huttner, Siegrist, Medaglini and Nakaya https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Gonzalez Dias Carvalho, Patrícia Conceição
Dominguez Crespo Hirata, Thiago
Mano Alves, Leandro Yukio
Moscardini, Isabelle Franco
do Nascimento, Ana Paula Barbosa
Costa-Martins, André G.
Sorgi, Sara
Harandi, Ali M.
Ferreira, Daniela M.
Vianello, Eleonora
Haks, Mariëlle C.
Ottenhoff, Tom H. M.
Santoro, Francesco
Martinez-Murillo, Paola
Huttner, Angela
Siegrist, Claire-Anne
Medaglini, Donata
Nakaya, Helder I.
Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts
title Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts
title_full Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts
title_fullStr Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts
title_full_unstemmed Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts
title_short Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts
title_sort baseline gene signatures of reactogenicity to ebola vaccination: a machine learning approach across multiple cohorts
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663260/
https://www.ncbi.nlm.nih.gov/pubmed/38022684
http://dx.doi.org/10.3389/fimmu.2023.1259197
work_keys_str_mv AT gonzalezdiascarvalhopatriciaconceicao baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT dominguezcrespohiratathiago baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT manoalvesleandroyukio baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT moscardiniisabellefranco baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT donascimentoanapaulabarbosa baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT costamartinsandreg baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT sorgisara baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT harandialim baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT ferreiradanielam baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT vianelloeleonora baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT haksmariellec baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT ottenhofftomhm baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT santorofrancesco baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT martinezmurillopaola baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT huttnerangela baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT siegristclaireanne baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT medaglinidonata baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts
AT nakayahelderi baselinegenesignaturesofreactogenicitytoebolavaccinationamachinelearningapproachacrossmultiplecohorts