Cargando…
A knowledge-guided pre-training framework for improving molecular representation learning
Learning effective molecular feature representation to facilitate molecular property prediction is of great significance for drug discovery. Recently, there has been a surge of interest in pre-training graph neural networks (GNNs) via self-supervised learning techniques to overcome the challenge of...
Autores principales: | Li, Han, Zhang, Ruotian, Min, Yaosen, Ma, Dacheng, Zhao, Dan, Zeng, Jianyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663446/ https://www.ncbi.nlm.nih.gov/pubmed/37989998 http://dx.doi.org/10.1038/s41467-023-43214-1 |
Ejemplares similares
-
Ologs: A Categorical Framework for Knowledge Representation
por: Spivak, David I., et al.
Publicado: (2012) -
Accurate prediction of molecular targets using a self-supervised image representation learning framework
por: Zeng, Xiangxiang, et al.
Publicado: (2022) -
The effect of training methodology on knowledge representation in categorization
por: Hélie, Sébastien, et al.
Publicado: (2017) -
Improving molecular property prediction through a task similarity enhanced transfer learning strategy
por: Li, Han, et al.
Publicado: (2022) -
An ontology-driven framework for knowledge representation of digital extortion attacks
por: Keshavarzi, Masoudeh, et al.
Publicado: (2023)