Cargando…

Discrete phase space-continuous time relativistic Klein–Gordon and Dirac equations, and a new non-singular Yukawa potential

This paper deals with the second quantization of interacting relativistic Fermionic and Bosonic fields in the arena of discrete phase space and continuous time. The mathematical formulation involves partial difference equations. The corresponding Feynman diagrams and a new [Formula: see text] -matri...

Descripción completa

Detalles Bibliográficos
Autores principales: Das, Anadijiban, Chatterjee, Rupak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663489/
https://www.ncbi.nlm.nih.gov/pubmed/37990047
http://dx.doi.org/10.1038/s41598-023-47344-w
Descripción
Sumario:This paper deals with the second quantization of interacting relativistic Fermionic and Bosonic fields in the arena of discrete phase space and continuous time. The mathematical formulation involves partial difference equations. The corresponding Feynman diagrams and a new [Formula: see text] -matrix theory is developed. In the special case of proton-proton Møller scattering via an exchange of a neutral meson, the explicit second order element [Formula: see text] is deduced. In the approximation of very low external three-momenta, a new Yukawa potential is explicitly derived from [Formula: see text] . Moreover, it is rigorously proved that this new Yukawa potential is divergence-free. The mass parameter of the exchanged meson may be set to zero to obtain a type of scalar Boson exchange between hypothetical Fermions. This provides a limiting case of a new Coulomb type potential directly from the new singularity free Yukawa potential. A divergence-free Coulomb potential between two Fermions at two discrete points is shown to be proportional to the Euler beta function. Within this relativistic discrete phase space continuous time, a single quanta is shown to occupy the hyper-tori [Formula: see text] where [Formula: see text] is a circle of radius [Formula: see text] .