Cargando…
Exploration of truss metamaterials with graph based generative modeling
In the expanding landscape of metamaterial design, Zheng and colleagues introduces a framework that bridges design and properties, using machine learning to enhance truss metamaterials. A neural network creates an interpretable, low-dimensional space, empowering designers to tailor mechanical proper...
Autor principal: | Shaikeea, Angkur Jyoti Dipanka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663501/ https://www.ncbi.nlm.nih.gov/pubmed/37990017 http://dx.doi.org/10.1038/s41467-023-43217-y |
Ejemplares similares
-
Universal representations of evaporation modes in sessile droplets
por: Shaikeea, Angkur Jyoti Dipanka, et al.
Publicado: (2017) -
Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling
por: Zheng, Li, et al.
Publicado: (2023) -
Inverting the structure–property map of truss metamaterials by deep learning
por: Bastek, Jan-Hendrik, et al.
Publicado: (2021) -
Inguinal Trusses
Publicado: (1904) -
Trusses and Stockings
Publicado: (1887)