Cargando…
SPACEL: deep learning-based characterization of spatial transcriptome architectures
Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning t...
Autores principales: | Xu, Hao, Wang, Shuyan, Fang, Minghao, Luo, Songwen, Chen, Chunpeng, Wan, Siyuan, Wang, Rirui, Tang, Meifang, Xue, Tian, Li, Bin, Lin, Jun, Qu, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663563/ https://www.ncbi.nlm.nih.gov/pubmed/37990022 http://dx.doi.org/10.1038/s41467-023-43220-3 |
Ejemplares similares
-
DeepST: identifying spatial domains in spatial transcriptomics by deep learning
por: Xu, Chang, et al.
Publicado: (2022) -
Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture
por: Lu, Yanfang, et al.
Publicado: (2021) -
Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning
por: Chang, Yuzhou, et al.
Publicado: (2022) -
Spatial transcriptomes within the Pseudomonas aeruginosa biofilm architecture
por: Heacock‐Kang, Yun, et al.
Publicado: (2017) -
Spatial Transcriptome Uncovers the Mouse Lung Architectures and Functions
por: Jiang, Yujia, et al.
Publicado: (2022)