Cargando…

Sediment core analysis using artificial intelligence

Subsurface stratigraphic modeling is crucial for a variety of environmental, societal, and economic challenges. However, the need for specific sedimentological skills in sediment core analysis may constitute a limitation. Methods based on Machine Learning and Deep Learning can play a central role in...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Martino, Andrea, Carlini, Gianluca, Castellani, Gastone, Remondini, Daniel, Amorosi, Alessandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663584/
https://www.ncbi.nlm.nih.gov/pubmed/37989779
http://dx.doi.org/10.1038/s41598-023-47546-2
Descripción
Sumario:Subsurface stratigraphic modeling is crucial for a variety of environmental, societal, and economic challenges. However, the need for specific sedimentological skills in sediment core analysis may constitute a limitation. Methods based on Machine Learning and Deep Learning can play a central role in automatizing this time-consuming procedure. In this work, using a robust dataset of high-resolution digital images from continuous sediment cores of Holocene age that reflect a wide spectrum of continental to shallow-marine depositional environments, we outline a novel deep-learning-based approach to perform automatic semantic segmentation directly on core images, leveraging the power of convolutional neural networks. To optimize the interpretation process and maximize scientific value, we use six sedimentary facies associations as target classes in lieu of ineffective classification methods based uniquely on lithology. We propose an automated model that can rapidly characterize sediment cores, allowing immediate guidance for stratigraphic correlation and subsurface reconstructions.