Cargando…
Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling
The rise of machine learning has fueled the discovery of new materials and, especially, metamaterials—truss lattices being their most prominent class. While their tailorable properties have been explored extensively, the design of truss-based metamaterials has remained highly limited and often heuri...
Autores principales: | Zheng, Li, Karapiperis, Konstantinos, Kumar, Siddhant, Kochmann, Dennis M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663604/ https://www.ncbi.nlm.nih.gov/pubmed/37989748 http://dx.doi.org/10.1038/s41467-023-42068-x |
Ejemplares similares
-
Inverting the structure–property map of truss metamaterials by deep learning
por: Bastek, Jan-Hendrik, et al.
Publicado: (2021) -
Exploration of truss metamaterials with graph based generative modeling
por: Shaikeea, Angkur Jyoti Dipanka
Publicado: (2023) -
Soft Adaptive Mechanical Metamaterials
por: Khajehtourian, Romik, et al.
Publicado: (2021) -
An Optimal Strain Gauge Layout Design for the Measurement of Truss Structures
por: Kyung, JungHyun, et al.
Publicado: (2023) -
Design and Mechanical Characterisation of a Large Truss Structure for Continuous Manufacturing in Space
por: Li, Peng, et al.
Publicado: (2022)