Cargando…

A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid

The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO(2) utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthesis of f...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Leiming, Wrubel, Jacob A., Baez-Cotto, Carlos M., Intia, Fry, Park, Jae Hyung, Kropf, Arthur Jeremy, Kariuki, Nancy, Huang, Zhe, Farghaly, Ahmed, Amichi, Lynda, Saha, Prantik, Tao, Ling, Cullen, David A., Myers, Deborah J., Ferrandon, Magali S., Neyerlin, K. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663610/
https://www.ncbi.nlm.nih.gov/pubmed/37989737
http://dx.doi.org/10.1038/s41467-023-43409-6
_version_ 1785148673361969152
author Hu, Leiming
Wrubel, Jacob A.
Baez-Cotto, Carlos M.
Intia, Fry
Park, Jae Hyung
Kropf, Arthur Jeremy
Kariuki, Nancy
Huang, Zhe
Farghaly, Ahmed
Amichi, Lynda
Saha, Prantik
Tao, Ling
Cullen, David A.
Myers, Deborah J.
Ferrandon, Magali S.
Neyerlin, K. C.
author_facet Hu, Leiming
Wrubel, Jacob A.
Baez-Cotto, Carlos M.
Intia, Fry
Park, Jae Hyung
Kropf, Arthur Jeremy
Kariuki, Nancy
Huang, Zhe
Farghaly, Ahmed
Amichi, Lynda
Saha, Prantik
Tao, Ling
Cullen, David A.
Myers, Deborah J.
Ferrandon, Magali S.
Neyerlin, K. C.
author_sort Hu, Leiming
collection PubMed
description The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO(2) utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthesis of formic acid from carbon dioxide. The key technological advancement is a perforated cation exchange membrane, which, when utilized in a forward bias bipolar membrane configuration, allows formic acid generated at the membrane interface to exit through the anode flow field at concentrations up to 0.25 M. Having no additional interlayer components between the anode and cathode this concept is positioned to leverage currently available materials and stack designs ubiquitous in fuel cell and H(2) electrolysis, enabling a more rapid transition to scale and commercialization. The perforated cation exchange membrane configuration can achieve >75% Faradaic efficiency to formic acid at <2 V and 300 mA/cm(2) in a 25 cm(2) cell. More critically, a 55-hour stability test at 200 mA/cm(2) shows stable Faradaic efficiency and cell voltage. Technoeconomic analysis is utilized to illustrate a path towards achieving cost parity with current formic acid production methods.
format Online
Article
Text
id pubmed-10663610
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106636102023-11-22 A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid Hu, Leiming Wrubel, Jacob A. Baez-Cotto, Carlos M. Intia, Fry Park, Jae Hyung Kropf, Arthur Jeremy Kariuki, Nancy Huang, Zhe Farghaly, Ahmed Amichi, Lynda Saha, Prantik Tao, Ling Cullen, David A. Myers, Deborah J. Ferrandon, Magali S. Neyerlin, K. C. Nat Commun Article The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO(2) utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthesis of formic acid from carbon dioxide. The key technological advancement is a perforated cation exchange membrane, which, when utilized in a forward bias bipolar membrane configuration, allows formic acid generated at the membrane interface to exit through the anode flow field at concentrations up to 0.25 M. Having no additional interlayer components between the anode and cathode this concept is positioned to leverage currently available materials and stack designs ubiquitous in fuel cell and H(2) electrolysis, enabling a more rapid transition to scale and commercialization. The perforated cation exchange membrane configuration can achieve >75% Faradaic efficiency to formic acid at <2 V and 300 mA/cm(2) in a 25 cm(2) cell. More critically, a 55-hour stability test at 200 mA/cm(2) shows stable Faradaic efficiency and cell voltage. Technoeconomic analysis is utilized to illustrate a path towards achieving cost parity with current formic acid production methods. Nature Publishing Group UK 2023-11-22 /pmc/articles/PMC10663610/ /pubmed/37989737 http://dx.doi.org/10.1038/s41467-023-43409-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hu, Leiming
Wrubel, Jacob A.
Baez-Cotto, Carlos M.
Intia, Fry
Park, Jae Hyung
Kropf, Arthur Jeremy
Kariuki, Nancy
Huang, Zhe
Farghaly, Ahmed
Amichi, Lynda
Saha, Prantik
Tao, Ling
Cullen, David A.
Myers, Deborah J.
Ferrandon, Magali S.
Neyerlin, K. C.
A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid
title A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid
title_full A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid
title_fullStr A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid
title_full_unstemmed A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid
title_short A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid
title_sort scalable membrane electrode assembly architecture for efficient electrochemical conversion of co(2) to formic acid
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663610/
https://www.ncbi.nlm.nih.gov/pubmed/37989737
http://dx.doi.org/10.1038/s41467-023-43409-6
work_keys_str_mv AT huleiming ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT wrubeljacoba ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT baezcottocarlosm ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT intiafry ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT parkjaehyung ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT kropfarthurjeremy ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT kariukinancy ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT huangzhe ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT farghalyahmed ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT amichilynda ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT sahaprantik ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT taoling ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT cullendavida ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT myersdeborahj ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT ferrandonmagalis ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT neyerlinkc ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT huleiming scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT wrubeljacoba scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT baezcottocarlosm scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT intiafry scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT parkjaehyung scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT kropfarthurjeremy scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT kariukinancy scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT huangzhe scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT farghalyahmed scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT amichilynda scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT sahaprantik scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT taoling scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT cullendavida scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT myersdeborahj scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT ferrandonmagalis scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid
AT neyerlinkc scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid