Cargando…
A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid
The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO(2) utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthesis of f...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663610/ https://www.ncbi.nlm.nih.gov/pubmed/37989737 http://dx.doi.org/10.1038/s41467-023-43409-6 |
_version_ | 1785148673361969152 |
---|---|
author | Hu, Leiming Wrubel, Jacob A. Baez-Cotto, Carlos M. Intia, Fry Park, Jae Hyung Kropf, Arthur Jeremy Kariuki, Nancy Huang, Zhe Farghaly, Ahmed Amichi, Lynda Saha, Prantik Tao, Ling Cullen, David A. Myers, Deborah J. Ferrandon, Magali S. Neyerlin, K. C. |
author_facet | Hu, Leiming Wrubel, Jacob A. Baez-Cotto, Carlos M. Intia, Fry Park, Jae Hyung Kropf, Arthur Jeremy Kariuki, Nancy Huang, Zhe Farghaly, Ahmed Amichi, Lynda Saha, Prantik Tao, Ling Cullen, David A. Myers, Deborah J. Ferrandon, Magali S. Neyerlin, K. C. |
author_sort | Hu, Leiming |
collection | PubMed |
description | The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO(2) utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthesis of formic acid from carbon dioxide. The key technological advancement is a perforated cation exchange membrane, which, when utilized in a forward bias bipolar membrane configuration, allows formic acid generated at the membrane interface to exit through the anode flow field at concentrations up to 0.25 M. Having no additional interlayer components between the anode and cathode this concept is positioned to leverage currently available materials and stack designs ubiquitous in fuel cell and H(2) electrolysis, enabling a more rapid transition to scale and commercialization. The perforated cation exchange membrane configuration can achieve >75% Faradaic efficiency to formic acid at <2 V and 300 mA/cm(2) in a 25 cm(2) cell. More critically, a 55-hour stability test at 200 mA/cm(2) shows stable Faradaic efficiency and cell voltage. Technoeconomic analysis is utilized to illustrate a path towards achieving cost parity with current formic acid production methods. |
format | Online Article Text |
id | pubmed-10663610 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-106636102023-11-22 A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid Hu, Leiming Wrubel, Jacob A. Baez-Cotto, Carlos M. Intia, Fry Park, Jae Hyung Kropf, Arthur Jeremy Kariuki, Nancy Huang, Zhe Farghaly, Ahmed Amichi, Lynda Saha, Prantik Tao, Ling Cullen, David A. Myers, Deborah J. Ferrandon, Magali S. Neyerlin, K. C. Nat Commun Article The electrochemical reduction of carbon dioxide to formic acid is a promising pathway to improve CO(2) utilization and has potential applications as a hydrogen storage medium. In this work, a zero-gap membrane electrode assembly architecture is developed for the direct electrochemical synthesis of formic acid from carbon dioxide. The key technological advancement is a perforated cation exchange membrane, which, when utilized in a forward bias bipolar membrane configuration, allows formic acid generated at the membrane interface to exit through the anode flow field at concentrations up to 0.25 M. Having no additional interlayer components between the anode and cathode this concept is positioned to leverage currently available materials and stack designs ubiquitous in fuel cell and H(2) electrolysis, enabling a more rapid transition to scale and commercialization. The perforated cation exchange membrane configuration can achieve >75% Faradaic efficiency to formic acid at <2 V and 300 mA/cm(2) in a 25 cm(2) cell. More critically, a 55-hour stability test at 200 mA/cm(2) shows stable Faradaic efficiency and cell voltage. Technoeconomic analysis is utilized to illustrate a path towards achieving cost parity with current formic acid production methods. Nature Publishing Group UK 2023-11-22 /pmc/articles/PMC10663610/ /pubmed/37989737 http://dx.doi.org/10.1038/s41467-023-43409-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Hu, Leiming Wrubel, Jacob A. Baez-Cotto, Carlos M. Intia, Fry Park, Jae Hyung Kropf, Arthur Jeremy Kariuki, Nancy Huang, Zhe Farghaly, Ahmed Amichi, Lynda Saha, Prantik Tao, Ling Cullen, David A. Myers, Deborah J. Ferrandon, Magali S. Neyerlin, K. C. A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid |
title | A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid |
title_full | A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid |
title_fullStr | A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid |
title_full_unstemmed | A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid |
title_short | A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO(2) to formic acid |
title_sort | scalable membrane electrode assembly architecture for efficient electrochemical conversion of co(2) to formic acid |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663610/ https://www.ncbi.nlm.nih.gov/pubmed/37989737 http://dx.doi.org/10.1038/s41467-023-43409-6 |
work_keys_str_mv | AT huleiming ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT wrubeljacoba ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT baezcottocarlosm ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT intiafry ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT parkjaehyung ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT kropfarthurjeremy ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT kariukinancy ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT huangzhe ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT farghalyahmed ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT amichilynda ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT sahaprantik ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT taoling ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT cullendavida ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT myersdeborahj ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT ferrandonmagalis ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT neyerlinkc ascalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT huleiming scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT wrubeljacoba scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT baezcottocarlosm scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT intiafry scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT parkjaehyung scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT kropfarthurjeremy scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT kariukinancy scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT huangzhe scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT farghalyahmed scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT amichilynda scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT sahaprantik scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT taoling scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT cullendavida scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT myersdeborahj scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT ferrandonmagalis scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid AT neyerlinkc scalablemembraneelectrodeassemblyarchitectureforefficientelectrochemicalconversionofco2toformicacid |