Cargando…
Trustworthy in silico cell labeling via ensemble-based image translation
Artificial intelligence (AI) image translation has been a valuable tool for processing image data in biological and medical research. To apply such a tool in mission-critical applications, including drug screening, toxicity study, and clinical diagnostics, it is essential to ensure that the AI predi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663640/ https://www.ncbi.nlm.nih.gov/pubmed/38026685 http://dx.doi.org/10.1016/j.bpr.2023.100133 |
Sumario: | Artificial intelligence (AI) image translation has been a valuable tool for processing image data in biological and medical research. To apply such a tool in mission-critical applications, including drug screening, toxicity study, and clinical diagnostics, it is essential to ensure that the AI prediction is trustworthy. Here, we demonstrate that an ensemble learning method can quantify the uncertainty of AI image translation. We tested the uncertainty evaluation using experimentally acquired images of mesenchymal stromal cells. We find that the ensemble method reports a prediction standard deviation that correlates with the prediction error, estimating the prediction uncertainty. We show that this uncertainty is in agreement with the prediction error and Pearson correlation coefficient. We further show that the ensemble method can detect out-of-distribution input images by reporting increased uncertainty. Altogether, these results suggest that the ensemble-estimated uncertainty can be a useful indicator for identifying erroneous AI image translations. |
---|