Cargando…

Modeling selectivity of antimicrobial peptides: how it depends on the presence of host cells and cell density

Antimicrobial peptides (AMPs), naturally-occurring peptide antibiotics, are known to attack bacteria selectively over the host cells. The emergence of drug-resistant bacteria has spurred much effort in utilizing optimized (more selective) AMPs as new peptide antibiotics. Cell selectivity of these pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Suemin, Schefter, Bethany R., Taheri-Araghi, Sattar, Ha, Bae-Yeun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663724/
https://www.ncbi.nlm.nih.gov/pubmed/38020026
http://dx.doi.org/10.1039/d3ra06030f
_version_ 1785148682468851712
author Lee, Suemin
Schefter, Bethany R.
Taheri-Araghi, Sattar
Ha, Bae-Yeun
author_facet Lee, Suemin
Schefter, Bethany R.
Taheri-Araghi, Sattar
Ha, Bae-Yeun
author_sort Lee, Suemin
collection PubMed
description Antimicrobial peptides (AMPs), naturally-occurring peptide antibiotics, are known to attack bacteria selectively over the host cells. The emergence of drug-resistant bacteria has spurred much effort in utilizing optimized (more selective) AMPs as new peptide antibiotics. Cell selectivity of these peptides depends on various factors or parameters such as their binding affinity for cell membranes, peptide trapping in cells, peptide coverages on cell membranes required for membrane rupture, and cell densities. In this work, using a biophysical model of peptide selectivity, we show this dependence quantitatively especially for a mixture of bacteria and host cells. The model suggests a rather nontrivial dependence of the selectivity on the presence of host cells, cell density, and peptide trapping. In a typical biological setting, peptide trapping works in favor of host cells; the selectivity increases with increasing host-cell density but decreases with bacterial cell density. Because of the cell-density dependence of peptide activity, the selectivity can be overestimated by two or three orders of magnitude. The model also clarifies how the cell selectivity of AMPs differs from their membrane selectivity.
format Online
Article
Text
id pubmed-10663724
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-106637242023-11-22 Modeling selectivity of antimicrobial peptides: how it depends on the presence of host cells and cell density Lee, Suemin Schefter, Bethany R. Taheri-Araghi, Sattar Ha, Bae-Yeun RSC Adv Chemistry Antimicrobial peptides (AMPs), naturally-occurring peptide antibiotics, are known to attack bacteria selectively over the host cells. The emergence of drug-resistant bacteria has spurred much effort in utilizing optimized (more selective) AMPs as new peptide antibiotics. Cell selectivity of these peptides depends on various factors or parameters such as their binding affinity for cell membranes, peptide trapping in cells, peptide coverages on cell membranes required for membrane rupture, and cell densities. In this work, using a biophysical model of peptide selectivity, we show this dependence quantitatively especially for a mixture of bacteria and host cells. The model suggests a rather nontrivial dependence of the selectivity on the presence of host cells, cell density, and peptide trapping. In a typical biological setting, peptide trapping works in favor of host cells; the selectivity increases with increasing host-cell density but decreases with bacterial cell density. Because of the cell-density dependence of peptide activity, the selectivity can be overestimated by two or three orders of magnitude. The model also clarifies how the cell selectivity of AMPs differs from their membrane selectivity. The Royal Society of Chemistry 2023-11-22 /pmc/articles/PMC10663724/ /pubmed/38020026 http://dx.doi.org/10.1039/d3ra06030f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Lee, Suemin
Schefter, Bethany R.
Taheri-Araghi, Sattar
Ha, Bae-Yeun
Modeling selectivity of antimicrobial peptides: how it depends on the presence of host cells and cell density
title Modeling selectivity of antimicrobial peptides: how it depends on the presence of host cells and cell density
title_full Modeling selectivity of antimicrobial peptides: how it depends on the presence of host cells and cell density
title_fullStr Modeling selectivity of antimicrobial peptides: how it depends on the presence of host cells and cell density
title_full_unstemmed Modeling selectivity of antimicrobial peptides: how it depends on the presence of host cells and cell density
title_short Modeling selectivity of antimicrobial peptides: how it depends on the presence of host cells and cell density
title_sort modeling selectivity of antimicrobial peptides: how it depends on the presence of host cells and cell density
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663724/
https://www.ncbi.nlm.nih.gov/pubmed/38020026
http://dx.doi.org/10.1039/d3ra06030f
work_keys_str_mv AT leesuemin modelingselectivityofantimicrobialpeptideshowitdependsonthepresenceofhostcellsandcelldensity
AT schefterbethanyr modelingselectivityofantimicrobialpeptideshowitdependsonthepresenceofhostcellsandcelldensity
AT taheriaraghisattar modelingselectivityofantimicrobialpeptideshowitdependsonthepresenceofhostcellsandcelldensity
AT habaeyeun modelingselectivityofantimicrobialpeptideshowitdependsonthepresenceofhostcellsandcelldensity