Cargando…

The application of machine learning methods to the prediction of novel ligands for RORγ/RORγT receptors

In this work, we developed and applied a computational procedure for creating and validating predictive models capable of estimating the biological activity of ligands. The combination of modern machine learning methods, experimental data, and the appropriate setup of molecular descriptors led to a...

Descripción completa

Detalles Bibliográficos
Autores principales: Bachorz, Rafał A., Pastwińska, Joanna, Nowak, Damian, Karaś, Kaja, Karwaciak, Iwona, Ratajewski, Marcin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663739/
https://www.ncbi.nlm.nih.gov/pubmed/38022699
http://dx.doi.org/10.1016/j.csbj.2023.10.021
Descripción
Sumario:In this work, we developed and applied a computational procedure for creating and validating predictive models capable of estimating the biological activity of ligands. The combination of modern machine learning methods, experimental data, and the appropriate setup of molecular descriptors led to a set of well-performing models. We thoroughly inspected both the methodological space and various possibilities for creating a chemical feature space. The resulting models were applied to the virtual screening of the ZINC20 database to identify new, biologically active ligands of RORγ receptors, which are a subfamily of nuclear receptors. Based on the known ligands of RORγ, we selected candidates and calculate their predicted activities with the best-performing models. We chose two candidates that were experimentally verified. One of these candidates was confirmed to induce the biological activity of the RORγ receptors, which we consider proof of the efficacy of the proposed methodology.