Cargando…
Comparison of computed tomography image features extracted by radiomics, self-supervised learning and end-to-end deep learning for outcome prediction of oropharyngeal cancer
BACKGROUND AND PURPOSE: To compare the prediction performance of image features of computed tomography (CT) images extracted by radiomics, self-supervised learning and end-to-end deep learning for local control (LC), regional control (RC), locoregional control (LRC), distant metastasis-free survival...
Autores principales: | Ma, Baoqiang, Guo, Jiapan, Chu, Hung, van Dijk, Lisanne V., van Ooijen, Peter M.A., Langendijk, Johannes A., Both, Stefan, Sijtsema, Nanna M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663809/ https://www.ncbi.nlm.nih.gov/pubmed/38026084 http://dx.doi.org/10.1016/j.phro.2023.100502 |
Ejemplares similares
-
Delta-radiomics features during radiotherapy improve the prediction of late xerostomia
por: van Dijk, Lisanne V., et al.
Publicado: (2019) -
Task-Driven Learned Hyperspectral Data Reduction Using End-to-End Supervised Deep Learning
por: Zeegers, Mathé T., et al.
Publicado: (2020) -
End-to-end Jordanian dialect speech-to-text self-supervised learning framework
por: Safieh, Ali A., et al.
Publicado: (2022) -
Supervised and Unsupervised End-to-End Deep Learning for Gene Ontology Classification of Neural In Situ Hybridization Images †
por: Cohen, Ido, et al.
Publicado: (2019) -
Daily dose evaluation based on corrected CBCTs for breast cancer patients: accuracy of dose and complication risk assessment
por: Hamming, Vincent C., et al.
Publicado: (2022)