Cargando…
Unsupervised deep learning for molecular dynamics simulations: a novel analysis of protein–ligand interactions in SARS-CoV-2 M(pro)
Molecular dynamics (MD) simulations, which are central to drug discovery, offer detailed insights into protein–ligand interactions. However, analyzing large MD datasets remains a challenge. Current machine-learning solutions are predominantly supervised and have data labelling and standardisation is...
Autores principales: | Mustali, Jessica, Yasuda, Ikki, Hirano, Yoshinori, Yasuoka, Kenji, Gautieri, Alfonso, Arai, Noriyoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663885/ https://www.ncbi.nlm.nih.gov/pubmed/38019981 http://dx.doi.org/10.1039/d3ra06375e |
Ejemplares similares
-
Differences in ligand-induced protein dynamics extracted from an unsupervised deep learning approach correlate with protein–ligand binding affinities
por: Yasuda, Ikki, et al.
Publicado: (2022) -
Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder
por: Sherif, Fayroz F., et al.
Publicado: (2022) -
Self-assembly of peptide amphiphiles by vapor pressure osmometry and dissipative particle dynamics
por: Seki, Taiga, et al.
Publicado: (2018) -
An Unsupervised Deep Hyperspectral Anomaly Detector
por: Ma, Ning, et al.
Publicado: (2018) -
Quantum simulations of SARS-CoV-2 main protease M(pro) enable high-quality scoring of diverse ligands
por: Wang, Yuhang, et al.
Publicado: (2021)