Cargando…
Development and evaluation of quercetin enriched bentonite-reinforced starch-gelatin based bioplastic with antimicrobial property
Nowadays novel bio-based materials have been widely employed in food and pharmaceutical industry because of their wide acceptability by the consumers rather than the synthetic materials nevertheless, they possess poor mechanical properties. Reinforcement of biopolymers with intercalation of mineral...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663916/ https://www.ncbi.nlm.nih.gov/pubmed/38028210 http://dx.doi.org/10.1016/j.jsps.2023.101861 |
Sumario: | Nowadays novel bio-based materials have been widely employed in food and pharmaceutical industry because of their wide acceptability by the consumers rather than the synthetic materials nevertheless, they possess poor mechanical properties. Reinforcement of biopolymers with intercalation of mineral clays can improve their physicochemical properties; so that such biocomposites possess superior barrier and mechanical properties as well as stability and drug loading efficacy. Thus, this research aimed at formulating quercetin loaded bentonite-reinforced starch-gelatin based novel bioplastic with diverse applicability. The methodology of the study included Box Behnken optimization as well as physical, structural, mechanical and antimicrobial properties evaluation of the proposed reinforced bioplastics. Amount of starch, bentonite and glycerin were the independent variables while the tensile strength, swelling index and elongation percentage were studied as dependent variables. The optimized bioplastic film showed excellent physicochemical and morphological characteristics and also for efficient percentage drug content. The antimicrobial activity showed the highest activity against Escherichia coli followed by Pseudomonas aeruginosa and Staphylococcus aureus. Scanning electron microscopy (SEM) revealed the non-homogenous nature of the film. Generally, the results revealed that quercetin loaded bentonite-reinforced starch-gelatin based could be used as ecological friendly active food packaging as well as pharmaceutical application with significant antimicrobial properties. |
---|