Cargando…

Effect of IFN‑γ encapsulated liposomes on major signal transduction pathways in the lymphocytes of patients with lung cancer

Globally, lung cancer affected 2.2 million individuals and caused 1.8 million deaths in 2021. Lung cancer is caused by smoking, genetics and other factors. IFN-γ has anticancer activity. However, the mechanism by which IFN-γ has an effect on lung cancer is not fully understood. The present study aim...

Descripción completa

Detalles Bibliográficos
Autores principales: Alhawamdeh, Maysa, Almajali, Belal, Hourani, Wafa, Al-Jamal, Hamid Ali Nagi, Al-Wajeeh, Abdullah Saleh, Mwafi, Nesrin Riad, Al-Hajaya, Yousef, Saad, Hanan Kamel M., Anderson, Diana, Odeh, Mahmoud, Tarawneh, Ibraheam A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664063/
https://www.ncbi.nlm.nih.gov/pubmed/38028180
http://dx.doi.org/10.3892/ol.2023.14141
Descripción
Sumario:Globally, lung cancer affected 2.2 million individuals and caused 1.8 million deaths in 2021. Lung cancer is caused by smoking, genetics and other factors. IFN-γ has anticancer activity. However, the mechanism by which IFN-γ has an effect on lung cancer is not fully understood. The present study aimed to assess the effect of IFN-γ on the peripheral lymphocytes of patients with lung cancer compared with healthy controls. The efficacy of IFN-γ against oxidative stress was assessed using a comet repair assay and the effects of IFN-γ on p53, PARP1 and OGG1 genes and protein levels in lymphocytes was evaluated by RT-qPCR and western blotting. DNA damage was significantly reduced in the lymphocytes of patients treated with IFN-γ. However, there was no effect in the cells of healthy individuals after treatment with naked IFN-γ [IFN-γ (N)] and liposomal IFN-γ [IFN-γ (L)]. Following treatment with IFN-γ (N) and IFN-γ (L), the p53, PARP1 and OGG1 protein and gene expression levels were significantly increased (P<0.001). It has been suggested that IFN-γ may induce p53-mediated cell cycle arrest and DNA repair in patients. These findings supported the idea that IFN-γ (N) and IFN-γ (L) may serve a significant role in the treatment of lung cancer, via cell cycle arrest of cancer cells and repair mechanisms.