Cargando…
Assessing clusters of comorbidities in rheumatoid arthritis: a machine learning approach
BACKGROUND: Comorbid conditions are very common in rheumatoid arthritis (RA) and several prior studies have clustered them using machine learning (ML). We applied various ML algorithms to compare the clusters of comorbidities derived and to assess the value of the clusters for predicting future clin...
Autores principales: | Solomon, Daniel H., Guan, Hongshu, Johansson, Fredrik D., Santacroce, Leah, Malley, Wendi, Guo, Lin, Litman, Heather |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664370/ https://www.ncbi.nlm.nih.gov/pubmed/37993918 http://dx.doi.org/10.1186/s13075-023-03191-8 |
Ejemplares similares
-
Patterns in the sequential treatment of rheumatoid arthritis patients starting a b/tsDMARD: 10-year experience from a US-based registry
por: Matsson, Anton, et al.
Publicado: (2023) -
Satisfaction With a Virtual Learning Collaborative Aimed at Implementing Treat-to-Target in Rheumatoid Arthritis
por: Ellrodt, Jack, et al.
Publicado: (2022) -
Time‐Varying Association of Rheumatoid Arthritis Disease Activity to Subsequent Cardiovascular Risk
por: Yoshida, Kazuki, et al.
Publicado: (2022) -
Machine learning approaches for the genomic prediction of rheumatoid arthritis and systemic lupus erythematosus
por: Chung, Chih-Wei, et al.
Publicado: (2021) -
Development and Testing of an Electronic Health Record‐Integrated Patient‐Reported Outcome Application and Intervention to Improve Efficiency of Rheumatoid Arthritis Care
por: Solomon, Daniel H., et al.
Publicado: (2022)