Cargando…
Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids
Due to the high dimensionality and sparsity of the gene expression matrix in single-cell RNA-sequencing (scRNA-seq) data, coupled with significant noise generated by shallow sequencing, it poses a great challenge for cell clustering methods. While numerous computational methods have been proposed, t...
Autores principales: | Wang, Yu Mei, Sun, Yuzhi, Wang, Beiying, Wu, Zhiping, He, Xiao Ying, Zhao, Yuansong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664408/ https://www.ncbi.nlm.nih.gov/pubmed/37991248 http://dx.doi.org/10.1093/bib/bbad426 |
Ejemplares similares
-
PLSDA-batch: a multivariate framework to correct for batch effects in microbiome data
por: Wang, Yiwen, et al.
Publicado: (2023) -
Consensus clustering of single-cell RNA-seq data by enhancing network affinity
por: Cui, Yaxuan, et al.
Publicado: (2021) -
Quantum annealing-based clustering of single cell RNA-seq data
por: Kubacki, Michal, et al.
Publicado: (2023) -
Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations
por: Lei, Tianyuan, et al.
Publicado: (2023) -
Self-supervised contrastive learning for integrative single cell RNA-seq data analysis
por: Han, Wenkai, et al.
Publicado: (2022)