Cargando…
Evidential deep learning for trustworthy prediction of enzyme commission number
The rapid growth of uncharacterized enzymes and their functional diversity urge accurate and trustworthy computational functional annotation tools. However, current state-of-the-art models lack trustworthiness on the prediction of the multilabel classification problem with thousands of classes. Here...
Autores principales: | Han, So-Ra, Park, Mingyu, Kosaraju, Sai, Lee, JeungMin, Lee, Hyun, Lee, Jun Hyuck, Oh, Tae-Jin, Kang, Mingon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664415/ https://www.ncbi.nlm.nih.gov/pubmed/37991247 http://dx.doi.org/10.1093/bib/bbad401 |
Ejemplares similares
-
The repertoire of copy number alteration signatures in human cancer
por: Tao, Ziyu, et al.
Publicado: (2023) -
PEcnv: accurate and efficient detection of copy number variations of various lengths
por: Wang, Xuwen, et al.
Publicado: (2022) -
Computational prediction of species-specific yeast DNA replication origin via iterative feature representation
por: Manavalan, Balachandran, et al.
Publicado: (2020) -
SAM-TB: a whole genome sequencing data analysis website for detection of Mycobacterium tuberculosis drug resistance and transmission
por: Yang, Tingting, et al.
Publicado: (2022) -
STALLION: a stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction
por: Basith, Shaherin, et al.
Publicado: (2021)