Cargando…

How important is the linearity assumption in a sample size calculation for a randomised controlled trial where treatment is anticipated to affect a rate of change?

BACKGROUND: For certain conditions, treatments aim to lessen deterioration over time. A trial outcome could be change in a continuous measure, analysed using a random slopes model with a different slope in each treatment group. A sample size for a trial with a particular schedule of visits (e.g. ann...

Descripción completa

Detalles Bibliográficos
Autores principales: Morgan, Katy E., White, Ian R., Frost, Chris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664473/
https://www.ncbi.nlm.nih.gov/pubmed/37990159
http://dx.doi.org/10.1186/s12874-023-02093-2
Descripción
Sumario:BACKGROUND: For certain conditions, treatments aim to lessen deterioration over time. A trial outcome could be change in a continuous measure, analysed using a random slopes model with a different slope in each treatment group. A sample size for a trial with a particular schedule of visits (e.g. annually for three years) can be obtained using a two-stage process. First, relevant (co-) variances are estimated from a pre-existing dataset e.g. an observational study conducted in a similar setting. Second, standard formulae are used to calculate sample size. However, the random slopes model assumes linear trajectories with any difference in group means increasing proportionally to follow-up time. The impact of these assumptions failing is unclear. METHODS: We used simulation to assess the impact of a non-linear trajectory and/or non-proportional treatment effect on the proposed trial’s power. We used four trajectories, both linear and non-linear, and simulated observational studies to calculate sample sizes. Trials of this size were then simulated, with treatment effects proportional or non-proportional to time. RESULTS: For a proportional treatment effect and a trial visit schedule matching the observational study, powers are close to nominal even for non-linear trajectories. However, if the schedule does not match the observational study, powers can be above or below nominal levels, with the extent of this depending on parameters such as the residual error variance. For a non-proportional treatment effect, using a random slopes model can lead to powers far from nominal levels. CONCLUSIONS: If trajectories are suspected to be non-linear, observational data used to inform power calculations should have the same visit schedule as the proposed trial where possible. Additionally, if the treatment effect is expected to be non-proportional, the random slopes model should not be used. A model allowing trajectories to vary freely over time could be used instead, either as a second line analysis method (bearing in mind that power will be lost) or when powering the trial. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12874-023-02093-2.