Cargando…
Classification of tumor types using XGBoost machine learning model: a vector space transformation of genomic alterations
BACKGROUND: Machine learning (ML) represents a powerful tool to capture relationships between molecular alterations and cancer types and to extract biological information. Here, we developed a plain ML model aimed at distinguishing cancer types based on genetic lesions, providing an additional tool...
Autores principales: | Zelli, Veronica, Manno, Andrea, Compagnoni, Chiara, Ibraheem, Rasheed Oyewole, Zazzeroni, Francesca, Alesse, Edoardo, Rossi, Fabrizio, Arbib, Claudio, Tessitore, Alessandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664515/ https://www.ncbi.nlm.nih.gov/pubmed/37990214 http://dx.doi.org/10.1186/s12967-023-04720-4 |
Ejemplares similares
-
Role of exosomal microRNAs in cancer therapy and drug resistance mechanisms: focus on hepatocellular carcinoma
por: Zelli, Veronica, et al.
Publicado: (2022) -
Circulating MicroRNAs as Prognostic and Therapeutic Biomarkers in Breast Cancer Molecular Subtypes
por: Zelli, Veronica, et al.
Publicado: (2020) -
Applications of Next Generation Sequencing to the Analysis of Familial Breast/Ovarian Cancer
por: Zelli, Veronica, et al.
Publicado: (2020) -
Concurrent RAS and RAS/BRAF V600E Variants in Colorectal Cancer: More Frequent Than Expected? A Case Report
por: Zelli, Veronica, et al.
Publicado: (2022) -
Emerging Role of isomiRs in Cancer: State of the Art and Recent Advances
por: Zelli, Veronica, et al.
Publicado: (2021)