Cargando…
Biological underpinnings of radiomic magnetic resonance imaging phenotypes for risk stratification in IDH wild-type glioblastoma
BACKGROUND: To develop and validate a conventional MRI-based radiomic model for predicting prognosis in patients with IDH wild-type glioblastoma (GBM) and reveal the biological underpinning of the radiomic phenotypes. METHODS: A total of 801 adult patients (training set, N = 471; internal validation...
Autores principales: | Guan, Fangzhan, Wang, Zilong, Qiu, Yuning, Guo, Yu, Pei, Dongling, Wang, Minkai, Xing, Aoqi, Liu, Zhongyi, Yu, Bin, Cheng, Jingliang, Liu, Xianzhi, Ji, Yuchen, Yan, Dongming, Yan, Jing, Zhang, Zhenyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664532/ https://www.ncbi.nlm.nih.gov/pubmed/37993907 http://dx.doi.org/10.1186/s12967-023-04551-3 |
Ejemplares similares
-
Diffusion tensor imaging‐based machine learning for IDH wild‐type glioblastoma stratification to reveal the biological underpinning of radiomic features
por: Wang, Zilong, et al.
Publicado: (2023) -
Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas
por: Liu, Zhen, et al.
Publicado: (2023) -
Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images
por: Wang, Weiwei, et al.
Publicado: (2023) -
Combination of pre-treatment dynamic [(18)F]FET PET radiomics and conventional clinical parameters for the survival stratification in patients with IDH-wildtype glioblastoma
por: Li, Zhicong, et al.
Publicado: (2022) -
The Effect of Heterogenous Subregions in Glioblastomas on Survival
Stratification: A Radiomics Analysis Using the Multimodality MRI
por: Yin, Lulu, et al.
Publicado: (2021)