Cargando…

An overlooked oxidation mechanism of toluene: computational predictions and experimental validations

Secondary organic aerosols (SOAs) influence the Earth's climate and threaten human health. Aromatic hydrocarbons (AHs) are major precursors for SOA formation in the urban atmosphere. However, the revealed oxidation mechanism dramatically underestimates the contribution of AHs to SOA formation,...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Zihao, Ma, Fangfang, Liu, Yuliang, Yan, Chao, Huang, Dandan, Chen, Jingwen, Elm, Jonas, Li, Yuanyuan, Ding, Aijun, Pichelstorfer, Lukas, Xie, Hong-Bin, Nie, Wei, Francisco, Joseph S., Zhou, Putian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664553/
https://www.ncbi.nlm.nih.gov/pubmed/38023500
http://dx.doi.org/10.1039/d3sc03638c
_version_ 1785138642851725312
author Fu, Zihao
Ma, Fangfang
Liu, Yuliang
Yan, Chao
Huang, Dandan
Chen, Jingwen
Elm, Jonas
Li, Yuanyuan
Ding, Aijun
Pichelstorfer, Lukas
Xie, Hong-Bin
Nie, Wei
Francisco, Joseph S.
Zhou, Putian
author_facet Fu, Zihao
Ma, Fangfang
Liu, Yuliang
Yan, Chao
Huang, Dandan
Chen, Jingwen
Elm, Jonas
Li, Yuanyuan
Ding, Aijun
Pichelstorfer, Lukas
Xie, Hong-Bin
Nie, Wei
Francisco, Joseph S.
Zhou, Putian
author_sort Fu, Zihao
collection PubMed
description Secondary organic aerosols (SOAs) influence the Earth's climate and threaten human health. Aromatic hydrocarbons (AHs) are major precursors for SOA formation in the urban atmosphere. However, the revealed oxidation mechanism dramatically underestimates the contribution of AHs to SOA formation, strongly suggesting the importance of seeking additional oxidation pathways for SOA formation. Using toluene, the most abundant AHs, as a model system and the combination of quantum chemical method and field observations based on advanced mass spectrometry, we herein demonstrate that the second-generation oxidation of AHs can form novel epoxides (TEPOX) with high yield. Such TEPOX can further react with H(2)SO(4) or HNO(3) in the aerosol phase to form less-volatile compounds including novel non-aromatic and ring-retaining organosulfates or organonitrates through reactive uptakes, providing new candidates of AH-derived organosulfates or organonitrates for future ambient observation. With the newly revealed mechanism, the chemistry-aerosol box modeling revealed that the SOA yield of toluene oxidation can reach up to 0.35, much higher than 0.088 based on the original mechanism under the conditions of pH = 2 and 0.1 ppbv NO. This study opens a route for the formation of reactive uptake SOA precursors from AHs and significantly fills the current knowledge gap for SOA formation in the urban atmosphere.
format Online
Article
Text
id pubmed-10664553
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-106645532023-10-27 An overlooked oxidation mechanism of toluene: computational predictions and experimental validations Fu, Zihao Ma, Fangfang Liu, Yuliang Yan, Chao Huang, Dandan Chen, Jingwen Elm, Jonas Li, Yuanyuan Ding, Aijun Pichelstorfer, Lukas Xie, Hong-Bin Nie, Wei Francisco, Joseph S. Zhou, Putian Chem Sci Chemistry Secondary organic aerosols (SOAs) influence the Earth's climate and threaten human health. Aromatic hydrocarbons (AHs) are major precursors for SOA formation in the urban atmosphere. However, the revealed oxidation mechanism dramatically underestimates the contribution of AHs to SOA formation, strongly suggesting the importance of seeking additional oxidation pathways for SOA formation. Using toluene, the most abundant AHs, as a model system and the combination of quantum chemical method and field observations based on advanced mass spectrometry, we herein demonstrate that the second-generation oxidation of AHs can form novel epoxides (TEPOX) with high yield. Such TEPOX can further react with H(2)SO(4) or HNO(3) in the aerosol phase to form less-volatile compounds including novel non-aromatic and ring-retaining organosulfates or organonitrates through reactive uptakes, providing new candidates of AH-derived organosulfates or organonitrates for future ambient observation. With the newly revealed mechanism, the chemistry-aerosol box modeling revealed that the SOA yield of toluene oxidation can reach up to 0.35, much higher than 0.088 based on the original mechanism under the conditions of pH = 2 and 0.1 ppbv NO. This study opens a route for the formation of reactive uptake SOA precursors from AHs and significantly fills the current knowledge gap for SOA formation in the urban atmosphere. The Royal Society of Chemistry 2023-10-27 /pmc/articles/PMC10664553/ /pubmed/38023500 http://dx.doi.org/10.1039/d3sc03638c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Fu, Zihao
Ma, Fangfang
Liu, Yuliang
Yan, Chao
Huang, Dandan
Chen, Jingwen
Elm, Jonas
Li, Yuanyuan
Ding, Aijun
Pichelstorfer, Lukas
Xie, Hong-Bin
Nie, Wei
Francisco, Joseph S.
Zhou, Putian
An overlooked oxidation mechanism of toluene: computational predictions and experimental validations
title An overlooked oxidation mechanism of toluene: computational predictions and experimental validations
title_full An overlooked oxidation mechanism of toluene: computational predictions and experimental validations
title_fullStr An overlooked oxidation mechanism of toluene: computational predictions and experimental validations
title_full_unstemmed An overlooked oxidation mechanism of toluene: computational predictions and experimental validations
title_short An overlooked oxidation mechanism of toluene: computational predictions and experimental validations
title_sort overlooked oxidation mechanism of toluene: computational predictions and experimental validations
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664553/
https://www.ncbi.nlm.nih.gov/pubmed/38023500
http://dx.doi.org/10.1039/d3sc03638c
work_keys_str_mv AT fuzihao anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT mafangfang anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT liuyuliang anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT yanchao anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT huangdandan anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT chenjingwen anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT elmjonas anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT liyuanyuan anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT dingaijun anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT pichelstorferlukas anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT xiehongbin anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT niewei anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT franciscojosephs anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT zhouputian anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT fuzihao overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT mafangfang overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT liuyuliang overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT yanchao overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT huangdandan overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT chenjingwen overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT elmjonas overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT liyuanyuan overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT dingaijun overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT pichelstorferlukas overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT xiehongbin overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT niewei overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT franciscojosephs overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations
AT zhouputian overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations