Cargando…
An overlooked oxidation mechanism of toluene: computational predictions and experimental validations
Secondary organic aerosols (SOAs) influence the Earth's climate and threaten human health. Aromatic hydrocarbons (AHs) are major precursors for SOA formation in the urban atmosphere. However, the revealed oxidation mechanism dramatically underestimates the contribution of AHs to SOA formation,...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664553/ https://www.ncbi.nlm.nih.gov/pubmed/38023500 http://dx.doi.org/10.1039/d3sc03638c |
_version_ | 1785138642851725312 |
---|---|
author | Fu, Zihao Ma, Fangfang Liu, Yuliang Yan, Chao Huang, Dandan Chen, Jingwen Elm, Jonas Li, Yuanyuan Ding, Aijun Pichelstorfer, Lukas Xie, Hong-Bin Nie, Wei Francisco, Joseph S. Zhou, Putian |
author_facet | Fu, Zihao Ma, Fangfang Liu, Yuliang Yan, Chao Huang, Dandan Chen, Jingwen Elm, Jonas Li, Yuanyuan Ding, Aijun Pichelstorfer, Lukas Xie, Hong-Bin Nie, Wei Francisco, Joseph S. Zhou, Putian |
author_sort | Fu, Zihao |
collection | PubMed |
description | Secondary organic aerosols (SOAs) influence the Earth's climate and threaten human health. Aromatic hydrocarbons (AHs) are major precursors for SOA formation in the urban atmosphere. However, the revealed oxidation mechanism dramatically underestimates the contribution of AHs to SOA formation, strongly suggesting the importance of seeking additional oxidation pathways for SOA formation. Using toluene, the most abundant AHs, as a model system and the combination of quantum chemical method and field observations based on advanced mass spectrometry, we herein demonstrate that the second-generation oxidation of AHs can form novel epoxides (TEPOX) with high yield. Such TEPOX can further react with H(2)SO(4) or HNO(3) in the aerosol phase to form less-volatile compounds including novel non-aromatic and ring-retaining organosulfates or organonitrates through reactive uptakes, providing new candidates of AH-derived organosulfates or organonitrates for future ambient observation. With the newly revealed mechanism, the chemistry-aerosol box modeling revealed that the SOA yield of toluene oxidation can reach up to 0.35, much higher than 0.088 based on the original mechanism under the conditions of pH = 2 and 0.1 ppbv NO. This study opens a route for the formation of reactive uptake SOA precursors from AHs and significantly fills the current knowledge gap for SOA formation in the urban atmosphere. |
format | Online Article Text |
id | pubmed-10664553 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-106645532023-10-27 An overlooked oxidation mechanism of toluene: computational predictions and experimental validations Fu, Zihao Ma, Fangfang Liu, Yuliang Yan, Chao Huang, Dandan Chen, Jingwen Elm, Jonas Li, Yuanyuan Ding, Aijun Pichelstorfer, Lukas Xie, Hong-Bin Nie, Wei Francisco, Joseph S. Zhou, Putian Chem Sci Chemistry Secondary organic aerosols (SOAs) influence the Earth's climate and threaten human health. Aromatic hydrocarbons (AHs) are major precursors for SOA formation in the urban atmosphere. However, the revealed oxidation mechanism dramatically underestimates the contribution of AHs to SOA formation, strongly suggesting the importance of seeking additional oxidation pathways for SOA formation. Using toluene, the most abundant AHs, as a model system and the combination of quantum chemical method and field observations based on advanced mass spectrometry, we herein demonstrate that the second-generation oxidation of AHs can form novel epoxides (TEPOX) with high yield. Such TEPOX can further react with H(2)SO(4) or HNO(3) in the aerosol phase to form less-volatile compounds including novel non-aromatic and ring-retaining organosulfates or organonitrates through reactive uptakes, providing new candidates of AH-derived organosulfates or organonitrates for future ambient observation. With the newly revealed mechanism, the chemistry-aerosol box modeling revealed that the SOA yield of toluene oxidation can reach up to 0.35, much higher than 0.088 based on the original mechanism under the conditions of pH = 2 and 0.1 ppbv NO. This study opens a route for the formation of reactive uptake SOA precursors from AHs and significantly fills the current knowledge gap for SOA formation in the urban atmosphere. The Royal Society of Chemistry 2023-10-27 /pmc/articles/PMC10664553/ /pubmed/38023500 http://dx.doi.org/10.1039/d3sc03638c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Fu, Zihao Ma, Fangfang Liu, Yuliang Yan, Chao Huang, Dandan Chen, Jingwen Elm, Jonas Li, Yuanyuan Ding, Aijun Pichelstorfer, Lukas Xie, Hong-Bin Nie, Wei Francisco, Joseph S. Zhou, Putian An overlooked oxidation mechanism of toluene: computational predictions and experimental validations |
title | An overlooked oxidation mechanism of toluene: computational predictions and experimental validations |
title_full | An overlooked oxidation mechanism of toluene: computational predictions and experimental validations |
title_fullStr | An overlooked oxidation mechanism of toluene: computational predictions and experimental validations |
title_full_unstemmed | An overlooked oxidation mechanism of toluene: computational predictions and experimental validations |
title_short | An overlooked oxidation mechanism of toluene: computational predictions and experimental validations |
title_sort | overlooked oxidation mechanism of toluene: computational predictions and experimental validations |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664553/ https://www.ncbi.nlm.nih.gov/pubmed/38023500 http://dx.doi.org/10.1039/d3sc03638c |
work_keys_str_mv | AT fuzihao anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT mafangfang anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT liuyuliang anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT yanchao anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT huangdandan anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT chenjingwen anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT elmjonas anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT liyuanyuan anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT dingaijun anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT pichelstorferlukas anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT xiehongbin anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT niewei anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT franciscojosephs anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT zhouputian anoverlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT fuzihao overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT mafangfang overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT liuyuliang overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT yanchao overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT huangdandan overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT chenjingwen overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT elmjonas overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT liyuanyuan overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT dingaijun overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT pichelstorferlukas overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT xiehongbin overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT niewei overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT franciscojosephs overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations AT zhouputian overlookedoxidationmechanismoftoluenecomputationalpredictionsandexperimentalvalidations |