Cargando…

A novel efficient drug repurposing framework through drug-disease association data integration using convolutional neural networks

Drug repurposing is an exciting field of research toward recognizing a new FDA-approved drug target for the treatment of a specific disease. It has received extensive attention regarding the tedious, time-consuming, and highly expensive procedure with a high risk of failure of new drug discovery. Da...

Descripción completa

Detalles Bibliográficos
Autores principales: Amiri, Ramin, Razmara, Jafar, Parvizpour, Sepideh, Izadkhah, Habib
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664633/
https://www.ncbi.nlm.nih.gov/pubmed/37993777
http://dx.doi.org/10.1186/s12859-023-05572-x
Descripción
Sumario:Drug repurposing is an exciting field of research toward recognizing a new FDA-approved drug target for the treatment of a specific disease. It has received extensive attention regarding the tedious, time-consuming, and highly expensive procedure with a high risk of failure of new drug discovery. Data-driven approaches are an important class of methods that have been introduced for identifying a candidate drug against a target disease. In the present study, a model is proposed illustrating the integration of drug-disease association data for drug repurposing using a deep neural network. The model, so-called IDDI-DNN, primarily constructs similarity matrices for drug-related properties (three matrices), disease-related properties (two matrices), and drug-disease associations (one matrix). Then, these matrices are integrated into a unique matrix through a two-step procedure benefiting from the similarity network fusion method. The model uses a constructed matrix for the prediction of novel and unknown drug-disease associations through a convolutional neural network. The proposed model was evaluated comparatively using two different datasets including the gold standard dataset and DNdataset. Comparing the results of evaluations indicates that IDDI-DNN outperforms other state-of-the-art methods concerning prediction accuracy.