Cargando…
Fully Automated Segmentation of Human Eyeball Using Three-Dimensional U-Net in T2 Magnetic Resonance Imaging
PURPOSE: To develop and validate a fully automated deep-learning-based tool for segmentation of the human eyeball using a three-dimensional (3D) U-Net, compare its performance to semiautomatic segmentation ground truth and a two-dimensional (2D) U-Net, and analyze age and sex differences in eyeball...
Autores principales: | Yang, Jin-Ju, Kim, Kyeong Ho, Hong, Jinwoo, Yeon, Yeji, Lee, Ji Young, Lee, Won June, Kim, Yu Jeong, Lee, Jong-Min, Lim, Han Woong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664726/ https://www.ncbi.nlm.nih.gov/pubmed/37975841 http://dx.doi.org/10.1167/tvst.12.11.22 |
Ejemplares similares
-
BRAVE-NET: Fully Automated Arterial Brain Vessel Segmentation in Patients With Cerebrovascular Disease
por: Hilbert, Adam, et al.
Publicado: (2020) -
Segmentation of Lung Nodules on CT Images Using a Nested Three-Dimensional Fully Connected Convolutional Network
por: Kido, Shoji, et al.
Publicado: (2022) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
RatUNet: residual U-Net based on attention mechanism for image denoising
por: Zhang, Huibin, et al.
Publicado: (2022) -
A fully automated approach involving neuroimaging and deep learning for Parkinson’s disease detection and severity prediction
por: Erdaş, Çağatay Berke, et al.
Publicado: (2023)