Cargando…
Use of feature importance statistics to accurately predict asthma attacks using machine learning: A cross-sectional cohort study of the US population
BACKGROUND: Asthma attacks are a major cause of morbidity and mortality in vulnerable populations, and identification of associations with asthma attacks is necessary to improve public awareness and the timely delivery of medical interventions. OBJECTIVE: The study aimed to identify feature importan...
Autores principales: | Huang, Alexander A., Huang, Samuel Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664888/ https://www.ncbi.nlm.nih.gov/pubmed/37992024 http://dx.doi.org/10.1371/journal.pone.0288903 |
Ejemplares similares
-
The use of statistical and machine learning tools to accurately quantify the energy performance of residential buildings
por: Ibrahim, Dina M., et al.
Publicado: (2022) -
Identifying Effective Biomarkers for Accurate Pancreatic Cancer Prognosis Using Statistical Machine Learning
por: Abu-Khudir, Rasha, et al.
Publicado: (2023) -
Dendrogram of transparent feature importance machine learning statistics to classify associations for heart failure: A reanalysis of a retrospective cohort study of the Medical Information Mart for Intensive Care III (MIMIC-III) database
por: Huang, Alexander A., et al.
Publicado: (2023) -
Home monitoring with connected mobile devices for asthma attack prediction with machine learning
por: Tsang, Kevin C. H., et al.
Publicado: (2023) -
Predicting asthma attacks using connected mobile devices and machine learning: the AAMOS-00 observational study protocol
por: Tsang, Kevin Cheuk Him, et al.
Publicado: (2022)