Cargando…

A software package for efficient patient trajectory analysis applied to analyzing bladder cancer development

We present the Patient Trajectory Analysis Library (PTRA), a software package for explorative analysis of patient development. PTRA provides the tools for extracting statistically relevant trajectories from the medical event histories of a patient population. These trajectories can additionally be c...

Descripción completa

Detalles Bibliográficos
Autores principales: Herzeel, Charlotte, D’Hondt, Ellie, Vandeweerd, Valerie, Botermans, Wouter, Akand, Murat, Van der Aa, Frank, Wuyts, Roel, Verachtert, Wilfried
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664923/
https://www.ncbi.nlm.nih.gov/pubmed/37992021
http://dx.doi.org/10.1371/journal.pdig.0000384
_version_ 1785148811473059840
author Herzeel, Charlotte
D’Hondt, Ellie
Vandeweerd, Valerie
Botermans, Wouter
Akand, Murat
Van der Aa, Frank
Wuyts, Roel
Verachtert, Wilfried
author_facet Herzeel, Charlotte
D’Hondt, Ellie
Vandeweerd, Valerie
Botermans, Wouter
Akand, Murat
Van der Aa, Frank
Wuyts, Roel
Verachtert, Wilfried
author_sort Herzeel, Charlotte
collection PubMed
description We present the Patient Trajectory Analysis Library (PTRA), a software package for explorative analysis of patient development. PTRA provides the tools for extracting statistically relevant trajectories from the medical event histories of a patient population. These trajectories can additionally be clustered for visual inspection and identifying key events in patient progression. The algorithms of PTRA are based on a statistical method developed previously by Jensen et al, but we contribute several modifications and extensions to enable the implementation of a practical tool. This includes a new clustering strategy, filter mechanisms for controlling analysis to specific cohorts and for controlling trajectory output, a parallel implementation that executes on a single server rather than a high-performance computing (HPC) cluster, etc. PTRA is furthermore open source and the code is organized as a framework so researchers can reuse it to analyze new data sets. We illustrate our tool by discussing trajectories extracted from the TriNetX Dataworks database for analyzing bladder cancer development. We show this experiment uncovers medically sound trajectories for bladder cancer.
format Online
Article
Text
id pubmed-10664923
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-106649232023-11-22 A software package for efficient patient trajectory analysis applied to analyzing bladder cancer development Herzeel, Charlotte D’Hondt, Ellie Vandeweerd, Valerie Botermans, Wouter Akand, Murat Van der Aa, Frank Wuyts, Roel Verachtert, Wilfried PLOS Digit Health Research Article We present the Patient Trajectory Analysis Library (PTRA), a software package for explorative analysis of patient development. PTRA provides the tools for extracting statistically relevant trajectories from the medical event histories of a patient population. These trajectories can additionally be clustered for visual inspection and identifying key events in patient progression. The algorithms of PTRA are based on a statistical method developed previously by Jensen et al, but we contribute several modifications and extensions to enable the implementation of a practical tool. This includes a new clustering strategy, filter mechanisms for controlling analysis to specific cohorts and for controlling trajectory output, a parallel implementation that executes on a single server rather than a high-performance computing (HPC) cluster, etc. PTRA is furthermore open source and the code is organized as a framework so researchers can reuse it to analyze new data sets. We illustrate our tool by discussing trajectories extracted from the TriNetX Dataworks database for analyzing bladder cancer development. We show this experiment uncovers medically sound trajectories for bladder cancer. Public Library of Science 2023-11-22 /pmc/articles/PMC10664923/ /pubmed/37992021 http://dx.doi.org/10.1371/journal.pdig.0000384 Text en © 2023 Herzeel et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Herzeel, Charlotte
D’Hondt, Ellie
Vandeweerd, Valerie
Botermans, Wouter
Akand, Murat
Van der Aa, Frank
Wuyts, Roel
Verachtert, Wilfried
A software package for efficient patient trajectory analysis applied to analyzing bladder cancer development
title A software package for efficient patient trajectory analysis applied to analyzing bladder cancer development
title_full A software package for efficient patient trajectory analysis applied to analyzing bladder cancer development
title_fullStr A software package for efficient patient trajectory analysis applied to analyzing bladder cancer development
title_full_unstemmed A software package for efficient patient trajectory analysis applied to analyzing bladder cancer development
title_short A software package for efficient patient trajectory analysis applied to analyzing bladder cancer development
title_sort software package for efficient patient trajectory analysis applied to analyzing bladder cancer development
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664923/
https://www.ncbi.nlm.nih.gov/pubmed/37992021
http://dx.doi.org/10.1371/journal.pdig.0000384
work_keys_str_mv AT herzeelcharlotte asoftwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT dhondtellie asoftwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT vandeweerdvalerie asoftwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT botermanswouter asoftwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT akandmurat asoftwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT vanderaafrank asoftwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT wuytsroel asoftwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT verachtertwilfried asoftwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT herzeelcharlotte softwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT dhondtellie softwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT vandeweerdvalerie softwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT botermanswouter softwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT akandmurat softwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT vanderaafrank softwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT wuytsroel softwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment
AT verachtertwilfried softwarepackageforefficientpatienttrajectoryanalysisappliedtoanalyzingbladdercancerdevelopment