Cargando…

Speedy bearings to slacked steering: Mapping the navigation patterns and motions of Viking voyages

Viking sailors ruled the North Atlantic Ocean for about three hundred years. Their main sailing route was the 60° 21’ 55’’ latitude between Norway and Greenland. Although they did not have a magnetic compass, in sunshine they used a sun-compass to determine the geographical north (solar Viking navig...

Descripción completa

Detalles Bibliográficos
Autores principales: Takacs, Peter, Szaz, Denes, Pereszlenyi, Adam, Horvath, Gabor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664959/
https://www.ncbi.nlm.nih.gov/pubmed/37992043
http://dx.doi.org/10.1371/journal.pone.0293816
Descripción
Sumario:Viking sailors ruled the North Atlantic Ocean for about three hundred years. Their main sailing route was the 60° 21’ 55’’ latitude between Norway and Greenland. Although they did not have a magnetic compass, in sunshine they used a sun-compass to determine the geographical north (solar Viking navigation: SVN). It has been hypothesized that when the Sun was invisible, Viking navigators determined the direction of polarization of skylight with sunstones (dichroic/birefringent crystals), and then estimated the geographical north using the sun-compass (sky-polarimetric Viking navigation: SPVN). Many details of the hypothetical SPVN have been thoroughly revealed in psychophysical laboratory and planetarium experiments. Combining these results with measured celestial polarization patterns, the success of SPVN was obtained as functions of sailing, meteorological and navigation parameters (sunstone type, sailing date, navigation periodicity, night sailing, cloudiness conditions). What was so far lacking in this experimental and computational archeological approach is the study of the success of SVN and a combined navigation using solar cues in sunshine (SVN) and sky polarization at invisible Sun (SPVN), the latter being the most realistic method. In this work we determine the success of the sole SVN and the combined SVN-SPVN relative to the mere SPVN for three navigator types (determining the intended sailing direction with large, medium or small frequencies) at spring equinox and summer solstice, with and without night sailing. We found that to maximize the sailing success, navigators had to choose different navigation methods depending on the navigation frequency. Using sky polarization with very frequent navigation, resulted in the highest chance to survive a three-week voyage from Norway to Greenland.