Cargando…
Halogen bonding–driven chiral amplification of a bimetallic gold-copper cluster through hierarchical assembly
Understanding the fundamentals and applications of chirality relies substantially on the amplification of chirality through hierarchical assemblies involving various weak interactions. However, a notable challenge remains for metal clusters chiral assembly driven by halogen bonding, despite their pr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664983/ https://www.ncbi.nlm.nih.gov/pubmed/37992176 http://dx.doi.org/10.1126/sciadv.adj9013 |
Sumario: | Understanding the fundamentals and applications of chirality relies substantially on the amplification of chirality through hierarchical assemblies involving various weak interactions. However, a notable challenge remains for metal clusters chiral assembly driven by halogen bonding, despite their promising applications in lighting, catalysis, and biomedicine. Here, we used halogen bonding–driven assembly to achieve a hierarchical degree of achiral emissive Au(2)Cu(2) clusters. From single crystals to one-dimensional ribbons and then to helixes, the morphologies were primarily modulated by intermolecular halogen bonding that evoked by achiral or/and chiral iodofluorobenzene (IFBs) molecules. Concomitantly, the luminescence and circularly polarized luminescence (CPL) changed a lot, ultimately leading to a substantial increase in the luminescence dissymmetry g-factor (g(lum)) of 0.036 in the supramolecular helix. This work opens an avenue for hierarchical assemblies using predesigned metal clusters as building blocks though directional halogen bonding. This achievement marks a noteworthy advancement in the field of nanosized inorganic functional blocks. |
---|