Cargando…
Time-optimized protein NMR assignment with an integrative deep learning approach using AlphaFold and chemical shift prediction
Chemical shift assignment is vital for nuclear magnetic resonance (NMR)–based studies of protein structures, dynamics, and interactions, providing crucial atomic-level insight. However, obtaining chemical shift assignments is labor intensive and requires extensive measurement time. To address this l...
Autores principales: | Klukowski, Piotr, Riek, Roland, Güntert, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664993/ https://www.ncbi.nlm.nih.gov/pubmed/37992167 http://dx.doi.org/10.1126/sciadv.adi9323 |
Ejemplares similares
-
Chemical shift transfer: an effective strategy for protein NMR assignment with ARTINA
por: Wetton, Henry, et al.
Publicado: (2023) -
Rapid protein assignments and structures from raw NMR spectra with the deep learning technique ARTINA
por: Klukowski, Piotr, et al.
Publicado: (2022) -
NMRtist: an online platform for automated biomolecular NMR spectra analysis
por: Klukowski, Piotr, et al.
Publicado: (2023) -
Evaluation of Multi-Objective Optimization Algorithms for NMR Chemical Shift Assignment
por: Maden Yılmaz, Emel, et al.
Publicado: (2021) -
NMR hawk‐eyed view of AlphaFold2 structures
por: Zweckstetter, Markus
Publicado: (2021)