Cargando…
Artificial Intelligence Improves Patient Follow-Up in a Diabetic Retinopathy Screening Program
PURPOSE: We examine the rate of and reasons for follow-up in an Artificial Intelligence (AI)-based workflow for diabetic retinopathy (DR) screening relative to two human-based workflows. PATIENTS AND METHODS: A DR screening program initiated September 2019 between one institution and its affiliated...
Autores principales: | Dow, Eliot R, Chen, Karen M, Zhao, Cindy S, Knapp, Austen N, Phadke, Anuradha, Weng, Kirsti, Do, Diana V, Mahajan, Vinit B, Mruthyunjaya, Prithvi, Leng, Theodore, Myung, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665027/ https://www.ncbi.nlm.nih.gov/pubmed/38026608 http://dx.doi.org/10.2147/OPTH.S422513 |
Ejemplares similares
-
Predicting Systemic Health Features from Retinal Fundus Images Using Transfer-Learning-Based Artificial Intelligence Models
por: Khan, Nergis C., et al.
Publicado: (2022) -
AI-Human Hybrid Workflow Enhances Teleophthalmology for the Detection of Diabetic Retinopathy
por: Dow, Eliot R., et al.
Publicado: (2023) -
Cross-Platform Identification and Validation of Uveal Melanoma Vitreous Protein Biomarkers
por: Velez, Gabriel, et al.
Publicado: (2023) -
Multimodal imaging in non-paraneoplastic autoimmune retinopathy
por: Kasongole, David, et al.
Publicado: (2019) -
Artificial intelligence for diabetic retinopathy
por: Li, Sicong, et al.
Publicado: (2022)