Cargando…

Macromolecular condensation buffers intracellular water potential

Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions(1). Reciprocally, macromolecules restrict the movement of ‘structured’ water molecules within their hydration layers, reduci...

Descripción completa

Detalles Bibliográficos
Autores principales: Watson, Joseph L., Seinkmane, Estere, Styles, Christine T., Mihut, Andrei, Krüger, Lara K., McNally, Kerrie E., Planelles-Herrero, Vicente Jose, Dudek, Michal, McCall, Patrick M., Barbiero, Silvia, Vanden Oever, Michael, Peak-Chew, Sew Yeu, Porebski, Benjamin T., Zeng, Aiwei, Rzechorzek, Nina M., Wong, David C. S., Beale, Andrew D., Stangherlin, Alessandra, Riggi, Margot, Iwasa, Janet, Morf, Jörg, Miliotis, Christos, Guna, Alina, Inglis, Alison J., Brugués, Jan, Voorhees, Rebecca M., Chambers, Joseph E., Meng, Qing-Jun, O’Neill, John S., Edgar, Rachel S., Derivery, Emmanuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665201/
https://www.ncbi.nlm.nih.gov/pubmed/37853127
http://dx.doi.org/10.1038/s41586-023-06626-z
_version_ 1785138776715034624
author Watson, Joseph L.
Seinkmane, Estere
Styles, Christine T.
Mihut, Andrei
Krüger, Lara K.
McNally, Kerrie E.
Planelles-Herrero, Vicente Jose
Dudek, Michal
McCall, Patrick M.
Barbiero, Silvia
Vanden Oever, Michael
Peak-Chew, Sew Yeu
Porebski, Benjamin T.
Zeng, Aiwei
Rzechorzek, Nina M.
Wong, David C. S.
Beale, Andrew D.
Stangherlin, Alessandra
Riggi, Margot
Iwasa, Janet
Morf, Jörg
Miliotis, Christos
Guna, Alina
Inglis, Alison J.
Brugués, Jan
Voorhees, Rebecca M.
Chambers, Joseph E.
Meng, Qing-Jun
O’Neill, John S.
Edgar, Rachel S.
Derivery, Emmanuel
author_facet Watson, Joseph L.
Seinkmane, Estere
Styles, Christine T.
Mihut, Andrei
Krüger, Lara K.
McNally, Kerrie E.
Planelles-Herrero, Vicente Jose
Dudek, Michal
McCall, Patrick M.
Barbiero, Silvia
Vanden Oever, Michael
Peak-Chew, Sew Yeu
Porebski, Benjamin T.
Zeng, Aiwei
Rzechorzek, Nina M.
Wong, David C. S.
Beale, Andrew D.
Stangherlin, Alessandra
Riggi, Margot
Iwasa, Janet
Morf, Jörg
Miliotis, Christos
Guna, Alina
Inglis, Alison J.
Brugués, Jan
Voorhees, Rebecca M.
Chambers, Joseph E.
Meng, Qing-Jun
O’Neill, John S.
Edgar, Rachel S.
Derivery, Emmanuel
author_sort Watson, Joseph L.
collection PubMed
description Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions(1). Reciprocally, macromolecules restrict the movement of ‘structured’ water molecules within their hydration layers, reducing the available ‘free’ bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales(2,3); we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function.
format Online
Article
Text
id pubmed-10665201
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106652012023-10-18 Macromolecular condensation buffers intracellular water potential Watson, Joseph L. Seinkmane, Estere Styles, Christine T. Mihut, Andrei Krüger, Lara K. McNally, Kerrie E. Planelles-Herrero, Vicente Jose Dudek, Michal McCall, Patrick M. Barbiero, Silvia Vanden Oever, Michael Peak-Chew, Sew Yeu Porebski, Benjamin T. Zeng, Aiwei Rzechorzek, Nina M. Wong, David C. S. Beale, Andrew D. Stangherlin, Alessandra Riggi, Margot Iwasa, Janet Morf, Jörg Miliotis, Christos Guna, Alina Inglis, Alison J. Brugués, Jan Voorhees, Rebecca M. Chambers, Joseph E. Meng, Qing-Jun O’Neill, John S. Edgar, Rachel S. Derivery, Emmanuel Nature Article Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions(1). Reciprocally, macromolecules restrict the movement of ‘structured’ water molecules within their hydration layers, reducing the available ‘free’ bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales(2,3); we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function. Nature Publishing Group UK 2023-10-18 2023 /pmc/articles/PMC10665201/ /pubmed/37853127 http://dx.doi.org/10.1038/s41586-023-06626-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Watson, Joseph L.
Seinkmane, Estere
Styles, Christine T.
Mihut, Andrei
Krüger, Lara K.
McNally, Kerrie E.
Planelles-Herrero, Vicente Jose
Dudek, Michal
McCall, Patrick M.
Barbiero, Silvia
Vanden Oever, Michael
Peak-Chew, Sew Yeu
Porebski, Benjamin T.
Zeng, Aiwei
Rzechorzek, Nina M.
Wong, David C. S.
Beale, Andrew D.
Stangherlin, Alessandra
Riggi, Margot
Iwasa, Janet
Morf, Jörg
Miliotis, Christos
Guna, Alina
Inglis, Alison J.
Brugués, Jan
Voorhees, Rebecca M.
Chambers, Joseph E.
Meng, Qing-Jun
O’Neill, John S.
Edgar, Rachel S.
Derivery, Emmanuel
Macromolecular condensation buffers intracellular water potential
title Macromolecular condensation buffers intracellular water potential
title_full Macromolecular condensation buffers intracellular water potential
title_fullStr Macromolecular condensation buffers intracellular water potential
title_full_unstemmed Macromolecular condensation buffers intracellular water potential
title_short Macromolecular condensation buffers intracellular water potential
title_sort macromolecular condensation buffers intracellular water potential
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665201/
https://www.ncbi.nlm.nih.gov/pubmed/37853127
http://dx.doi.org/10.1038/s41586-023-06626-z
work_keys_str_mv AT watsonjosephl macromolecularcondensationbuffersintracellularwaterpotential
AT seinkmaneestere macromolecularcondensationbuffersintracellularwaterpotential
AT styleschristinet macromolecularcondensationbuffersintracellularwaterpotential
AT mihutandrei macromolecularcondensationbuffersintracellularwaterpotential
AT krugerlarak macromolecularcondensationbuffersintracellularwaterpotential
AT mcnallykerriee macromolecularcondensationbuffersintracellularwaterpotential
AT planellesherrerovicentejose macromolecularcondensationbuffersintracellularwaterpotential
AT dudekmichal macromolecularcondensationbuffersintracellularwaterpotential
AT mccallpatrickm macromolecularcondensationbuffersintracellularwaterpotential
AT barbierosilvia macromolecularcondensationbuffersintracellularwaterpotential
AT vandenoevermichael macromolecularcondensationbuffersintracellularwaterpotential
AT peakchewsewyeu macromolecularcondensationbuffersintracellularwaterpotential
AT porebskibenjamint macromolecularcondensationbuffersintracellularwaterpotential
AT zengaiwei macromolecularcondensationbuffersintracellularwaterpotential
AT rzechorzekninam macromolecularcondensationbuffersintracellularwaterpotential
AT wongdavidcs macromolecularcondensationbuffersintracellularwaterpotential
AT bealeandrewd macromolecularcondensationbuffersintracellularwaterpotential
AT stangherlinalessandra macromolecularcondensationbuffersintracellularwaterpotential
AT riggimargot macromolecularcondensationbuffersintracellularwaterpotential
AT iwasajanet macromolecularcondensationbuffersintracellularwaterpotential
AT morfjorg macromolecularcondensationbuffersintracellularwaterpotential
AT miliotischristos macromolecularcondensationbuffersintracellularwaterpotential
AT gunaalina macromolecularcondensationbuffersintracellularwaterpotential
AT inglisalisonj macromolecularcondensationbuffersintracellularwaterpotential
AT bruguesjan macromolecularcondensationbuffersintracellularwaterpotential
AT voorheesrebeccam macromolecularcondensationbuffersintracellularwaterpotential
AT chambersjosephe macromolecularcondensationbuffersintracellularwaterpotential
AT mengqingjun macromolecularcondensationbuffersintracellularwaterpotential
AT oneilljohns macromolecularcondensationbuffersintracellularwaterpotential
AT edgarrachels macromolecularcondensationbuffersintracellularwaterpotential
AT deriveryemmanuel macromolecularcondensationbuffersintracellularwaterpotential