Cargando…
Macromolecular condensation buffers intracellular water potential
Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions(1). Reciprocally, macromolecules restrict the movement of ‘structured’ water molecules within their hydration layers, reduci...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665201/ https://www.ncbi.nlm.nih.gov/pubmed/37853127 http://dx.doi.org/10.1038/s41586-023-06626-z |
_version_ | 1785138776715034624 |
---|---|
author | Watson, Joseph L. Seinkmane, Estere Styles, Christine T. Mihut, Andrei Krüger, Lara K. McNally, Kerrie E. Planelles-Herrero, Vicente Jose Dudek, Michal McCall, Patrick M. Barbiero, Silvia Vanden Oever, Michael Peak-Chew, Sew Yeu Porebski, Benjamin T. Zeng, Aiwei Rzechorzek, Nina M. Wong, David C. S. Beale, Andrew D. Stangherlin, Alessandra Riggi, Margot Iwasa, Janet Morf, Jörg Miliotis, Christos Guna, Alina Inglis, Alison J. Brugués, Jan Voorhees, Rebecca M. Chambers, Joseph E. Meng, Qing-Jun O’Neill, John S. Edgar, Rachel S. Derivery, Emmanuel |
author_facet | Watson, Joseph L. Seinkmane, Estere Styles, Christine T. Mihut, Andrei Krüger, Lara K. McNally, Kerrie E. Planelles-Herrero, Vicente Jose Dudek, Michal McCall, Patrick M. Barbiero, Silvia Vanden Oever, Michael Peak-Chew, Sew Yeu Porebski, Benjamin T. Zeng, Aiwei Rzechorzek, Nina M. Wong, David C. S. Beale, Andrew D. Stangherlin, Alessandra Riggi, Margot Iwasa, Janet Morf, Jörg Miliotis, Christos Guna, Alina Inglis, Alison J. Brugués, Jan Voorhees, Rebecca M. Chambers, Joseph E. Meng, Qing-Jun O’Neill, John S. Edgar, Rachel S. Derivery, Emmanuel |
author_sort | Watson, Joseph L. |
collection | PubMed |
description | Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions(1). Reciprocally, macromolecules restrict the movement of ‘structured’ water molecules within their hydration layers, reducing the available ‘free’ bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales(2,3); we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function. |
format | Online Article Text |
id | pubmed-10665201 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-106652012023-10-18 Macromolecular condensation buffers intracellular water potential Watson, Joseph L. Seinkmane, Estere Styles, Christine T. Mihut, Andrei Krüger, Lara K. McNally, Kerrie E. Planelles-Herrero, Vicente Jose Dudek, Michal McCall, Patrick M. Barbiero, Silvia Vanden Oever, Michael Peak-Chew, Sew Yeu Porebski, Benjamin T. Zeng, Aiwei Rzechorzek, Nina M. Wong, David C. S. Beale, Andrew D. Stangherlin, Alessandra Riggi, Margot Iwasa, Janet Morf, Jörg Miliotis, Christos Guna, Alina Inglis, Alison J. Brugués, Jan Voorhees, Rebecca M. Chambers, Joseph E. Meng, Qing-Jun O’Neill, John S. Edgar, Rachel S. Derivery, Emmanuel Nature Article Optimum protein function and biochemical activity critically depends on water availability because solvent thermodynamics drive protein folding and macromolecular interactions(1). Reciprocally, macromolecules restrict the movement of ‘structured’ water molecules within their hydration layers, reducing the available ‘free’ bulk solvent and therefore the total thermodynamic potential energy of water, or water potential. Here, within concentrated macromolecular solutions such as the cytosol, we found that modest changes in temperature greatly affect the water potential, and are counteracted by opposing changes in osmotic strength. This duality of temperature and osmotic strength enables simple manipulations of solvent thermodynamics to prevent cell death after extreme cold or heat shock. Physiologically, cells must sustain their activity against fluctuating temperature, pressure and osmotic strength, which impact water availability within seconds. Yet, established mechanisms of water homeostasis act over much slower timescales(2,3); we therefore postulated the existence of a rapid compensatory response. We find that this function is performed by water potential-driven changes in macromolecular assembly, particularly biomolecular condensation of intrinsically disordered proteins. The formation and dissolution of biomolecular condensates liberates and captures free water, respectively, quickly counteracting thermal or osmotic perturbations of water potential, which is consequently robustly buffered in the cytoplasm. Our results indicate that biomolecular condensation constitutes an intrinsic biophysical feedback response that rapidly compensates for intracellular osmotic and thermal fluctuations. We suggest that preserving water availability within the concentrated cytosol is an overlooked evolutionary driver of protein (dis)order and function. Nature Publishing Group UK 2023-10-18 2023 /pmc/articles/PMC10665201/ /pubmed/37853127 http://dx.doi.org/10.1038/s41586-023-06626-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Watson, Joseph L. Seinkmane, Estere Styles, Christine T. Mihut, Andrei Krüger, Lara K. McNally, Kerrie E. Planelles-Herrero, Vicente Jose Dudek, Michal McCall, Patrick M. Barbiero, Silvia Vanden Oever, Michael Peak-Chew, Sew Yeu Porebski, Benjamin T. Zeng, Aiwei Rzechorzek, Nina M. Wong, David C. S. Beale, Andrew D. Stangherlin, Alessandra Riggi, Margot Iwasa, Janet Morf, Jörg Miliotis, Christos Guna, Alina Inglis, Alison J. Brugués, Jan Voorhees, Rebecca M. Chambers, Joseph E. Meng, Qing-Jun O’Neill, John S. Edgar, Rachel S. Derivery, Emmanuel Macromolecular condensation buffers intracellular water potential |
title | Macromolecular condensation buffers intracellular water potential |
title_full | Macromolecular condensation buffers intracellular water potential |
title_fullStr | Macromolecular condensation buffers intracellular water potential |
title_full_unstemmed | Macromolecular condensation buffers intracellular water potential |
title_short | Macromolecular condensation buffers intracellular water potential |
title_sort | macromolecular condensation buffers intracellular water potential |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665201/ https://www.ncbi.nlm.nih.gov/pubmed/37853127 http://dx.doi.org/10.1038/s41586-023-06626-z |
work_keys_str_mv | AT watsonjosephl macromolecularcondensationbuffersintracellularwaterpotential AT seinkmaneestere macromolecularcondensationbuffersintracellularwaterpotential AT styleschristinet macromolecularcondensationbuffersintracellularwaterpotential AT mihutandrei macromolecularcondensationbuffersintracellularwaterpotential AT krugerlarak macromolecularcondensationbuffersintracellularwaterpotential AT mcnallykerriee macromolecularcondensationbuffersintracellularwaterpotential AT planellesherrerovicentejose macromolecularcondensationbuffersintracellularwaterpotential AT dudekmichal macromolecularcondensationbuffersintracellularwaterpotential AT mccallpatrickm macromolecularcondensationbuffersintracellularwaterpotential AT barbierosilvia macromolecularcondensationbuffersintracellularwaterpotential AT vandenoevermichael macromolecularcondensationbuffersintracellularwaterpotential AT peakchewsewyeu macromolecularcondensationbuffersintracellularwaterpotential AT porebskibenjamint macromolecularcondensationbuffersintracellularwaterpotential AT zengaiwei macromolecularcondensationbuffersintracellularwaterpotential AT rzechorzekninam macromolecularcondensationbuffersintracellularwaterpotential AT wongdavidcs macromolecularcondensationbuffersintracellularwaterpotential AT bealeandrewd macromolecularcondensationbuffersintracellularwaterpotential AT stangherlinalessandra macromolecularcondensationbuffersintracellularwaterpotential AT riggimargot macromolecularcondensationbuffersintracellularwaterpotential AT iwasajanet macromolecularcondensationbuffersintracellularwaterpotential AT morfjorg macromolecularcondensationbuffersintracellularwaterpotential AT miliotischristos macromolecularcondensationbuffersintracellularwaterpotential AT gunaalina macromolecularcondensationbuffersintracellularwaterpotential AT inglisalisonj macromolecularcondensationbuffersintracellularwaterpotential AT bruguesjan macromolecularcondensationbuffersintracellularwaterpotential AT voorheesrebeccam macromolecularcondensationbuffersintracellularwaterpotential AT chambersjosephe macromolecularcondensationbuffersintracellularwaterpotential AT mengqingjun macromolecularcondensationbuffersintracellularwaterpotential AT oneilljohns macromolecularcondensationbuffersintracellularwaterpotential AT edgarrachels macromolecularcondensationbuffersintracellularwaterpotential AT deriveryemmanuel macromolecularcondensationbuffersintracellularwaterpotential |