Cargando…
Nutrigenomics and microbiome shaping the future of personalized medicine: a review article
The relationship between nutrition and genes has long been hinted at and sometimes plainly associated with certain diseases. Now, after many years of research and coincidental findings, it is believed that this relationship, termed “Nutrigenomics,” is certainly a factor of major importance in variou...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665279/ https://www.ncbi.nlm.nih.gov/pubmed/37993702 http://dx.doi.org/10.1186/s43141-023-00599-2 |
Sumario: | The relationship between nutrition and genes has long been hinted at and sometimes plainly associated with certain diseases. Now, after many years of research and coincidental findings, it is believed that this relationship, termed “Nutrigenomics,” is certainly a factor of major importance in various conditions. In this review article, we discuss nutrigenomics, starting with basics definitions and enzymatic functions and ending with its palpable association with cancer. Now, diet is basically what we eat on a daily basis. Everything that enters through our alimentary tract ends up broken down to minute molecules and amino acids. These molecules interact with our microbiome and genome in discreet ways. For instance, we demonstrate how proper intake of probiotics enhances beneficial bacteria and may alleviate IBS and prevent colorectal cancer on the long term. We also show how a diet rich in folic acid is essential for methylenetetrahydrofolate reductase (MTHFR) function, which lowers risk of colorectal cancer. Also, we discuss how certain diets were associated with development of certain cancers. For example, red and processed meat are highly associated with colorectal and prostate cancer, salty diets with stomach cancer, and obesity with breast cancer. The modification of these diets significantly lowered the risk and improved prognosis of these cancers among many others. We also examined how micronutrients had a role in cancer prevention, as vitamin A and C exert anti-carcinogenic effects through their function as antioxidants. In addition, we show how folic acid prevent DNA mutations by enhancing protein methylation processes. Finally, after a systematic review of myriad articles on the etiology and prevention of cancer, we think that diet should be a crucial feature in cancer prevention and treatment programs. In the future, healthy diets and micronutrients may even be able to successively alter the liability to genetic mutations that result in cancer. It also will play a role in boosting treatment and improving prognosis of diagnosed cancers. |
---|