Cargando…
Evaluating the performance of low-frequency variant calling tools for the detection of variants from short-read deep sequencing data
Detection of low-frequency variants with high accuracy plays an important role in biomedical research and clinical practice. However, it is challenging to do so with next-generation sequencing (NGS) approaches due to the high error rates of NGS. To accurately distinguish low-level true variants from...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665316/ https://www.ncbi.nlm.nih.gov/pubmed/37993475 http://dx.doi.org/10.1038/s41598-023-47135-3 |
Sumario: | Detection of low-frequency variants with high accuracy plays an important role in biomedical research and clinical practice. However, it is challenging to do so with next-generation sequencing (NGS) approaches due to the high error rates of NGS. To accurately distinguish low-level true variants from these errors, many statistical variants calling tools for calling low-frequency variants have been proposed, but a systematic performance comparison of these tools has not yet been performed. Here, we evaluated four raw-reads-based variant callers (SiNVICT, outLyzer, Pisces, and LoFreq) and four UMI-based variant callers (DeepSNVMiner, MAGERI, smCounter2, and UMI-VarCal) considering their capability to call single nucleotide variants (SNVs) with allelic frequency as low as 0.025% in deep sequencing data. We analyzed a total of 54 simulated data with various sequencing depths and variant allele frequencies (VAFs), two reference data, and Horizon Tru-Q sample data. The results showed that the UMI-based callers, except smCounter2, outperformed the raw-reads-based callers regarding detection limit. Sequencing depth had almost no effect on the UMI-based callers but significantly influenced on the raw-reads-based callers. Regardless of the sequencing depth, MAGERI showed the fastest analysis, while smCounter2 consistently took the longest to finish the variant calling process. Overall, DeepSNVMiner and UMI-VarCal performed the best with considerably good sensitivity and precision of 88%, 100%, and 84%, 100%, respectively. In conclusion, the UMI-based callers, except smCounter2, outperformed the raw-reads-based callers in terms of sensitivity and precision. We recommend using DeepSNVMiner and UMI-VarCal for low-frequency variant detection. The results provide important information regarding future directions for reliable low-frequency variant detection and algorithm development, which is critical in genetics-based medical research and clinical applications. |
---|