Cargando…
Evaluating the performance of low-frequency variant calling tools for the detection of variants from short-read deep sequencing data
Detection of low-frequency variants with high accuracy plays an important role in biomedical research and clinical practice. However, it is challenging to do so with next-generation sequencing (NGS) approaches due to the high error rates of NGS. To accurately distinguish low-level true variants from...
Autores principales: | Xiang, Xudong, Lu, Bowen, Song, Dongyang, Li, Jie, Shu, Kunxian, Pu, Dan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665316/ https://www.ncbi.nlm.nih.gov/pubmed/37993475 http://dx.doi.org/10.1038/s41598-023-47135-3 |
Ejemplares similares
-
Evaluating the performance of tools used to call minority variants from whole genome short-read data
por: Said Mohammed, Khadija, et al.
Publicado: (2018) -
HAT: de novo variant calling for highly accurate short-read and long-read sequencing data
por: Ng, Jeffrey K., et al.
Publicado: (2023) -
A Benchmark of Genetic Variant Calling Pipelines Using Metagenomic Short-Read Sequencing
por: Andreu-Sánchez, Sergio, et al.
Publicado: (2021) -
Dysgu: efficient structural variant calling using short or long reads
por: Cleal, Kez, et al.
Publicado: (2022) -
DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection
por: Christensen, Mikkel H., et al.
Publicado: (2023)