Cargando…
Real-time machine learning model to predict in-hospital cardiac arrest using heart rate variability in ICU
Predicting in-hospital cardiac arrest in patients admitted to an intensive care unit (ICU) allows prompt interventions to improve patient outcomes. We developed and validated a machine learning-based real-time model for in-hospital cardiac arrest predictions using electrocardiogram (ECG)-based heart...
Autores principales: | Lee, Hyeonhoon, Yang, Hyun-Lim, Ryu, Ho Geol, Jung, Chul-Woo, Cho, Youn Joung, Yoon, Soo Bin, Yoon, Hyun-Kyu, Lee, Hyung-Chul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665411/ https://www.ncbi.nlm.nih.gov/pubmed/37993540 http://dx.doi.org/10.1038/s41746-023-00960-2 |
Ejemplares similares
-
Intraoperative ventilatory leak predicts prolonged air leak after lung resection: A retrospective observational study
por: Kim, Won Ho, et al.
Publicado: (2017) -
Development and validation of a reinforcement learning model for ventilation control during emergence from general anesthesia
por: Lee, Hyeonhoon, et al.
Publicado: (2023) -
Prediction of Acute Kidney Injury after Liver Transplantation: Machine Learning Approaches vs. Logistic Regression Model
por: Lee, Hyung-Chul, et al.
Publicado: (2018) -
Derivation and Validation of Machine Learning Approaches to Predict Acute Kidney Injury after Cardiac Surgery
por: Lee, Hyung-Chul, et al.
Publicado: (2018) -
Artificial intelligence in perioperative medicine: a narrative review
por: Yoon, Hyun-Kyu, et al.
Publicado: (2022)