Cargando…
Evaluating the effectiveness of stain normalization techniques in automated grading of invasive ductal carcinoma histopathological images
Debates persist regarding the impact of Stain Normalization (SN) on recent breast cancer histopathological studies. While some studies propose no influence on classification outcomes, others argue for improvement. This study aims to assess the efficacy of SN in breast cancer histopathological classi...
Autores principales: | Voon, Wingates, Hum, Yan Chai, Tee, Yee Kai, Yap, Wun-She, Nisar, Humaira, Mokayed, Hamam, Gupta, Neha, Lai, Khin Wee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665422/ https://www.ncbi.nlm.nih.gov/pubmed/37993544 http://dx.doi.org/10.1038/s41598-023-46619-6 |
Ejemplares similares
-
Performance analysis of seven Convolutional Neural Networks (CNNs) with transfer learning for Invasive Ductal Carcinoma (IDC) grading in breast histopathological images
por: Voon, Wingates, et al.
Publicado: (2022) -
Non-annotated renal histopathological image analysis with deep ensemble learning
por: Koo, Jia Chun, et al.
Publicado: (2023) -
Histopathological Gastric Cancer Detection on GasHisSDB Dataset Using Deep Ensemble Learning
por: Yong, Ming Ping, et al.
Publicado: (2023) -
Automated, Quantitative Analysis of Histopathological Staining in Nuclei
por: Henao, Ricardo, et al.
Publicado: (2014) -
An artifacts removal post-processing for epiphyseal region-of-interest (EROI) localization in automated bone age assessment (BAA)
por: Chai, Hum Yan, et al.
Publicado: (2011)