Cargando…
High-resolution temporal profiling of E. coli transcriptional response
Understanding how cells dynamically adapt to their environment is a primary focus of biology research. Temporal information about cellular behavior is often limited by both small numbers of data time-points and the methods used to analyze this data. Here, we apply unsupervised machine learning to a...
Autores principales: | Miano, Arianna, Rychel, Kevin, Lezia, Andrew, Sastry, Anand, Palsson, Bernhard, Hasty, Jeff |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665441/ https://www.ncbi.nlm.nih.gov/pubmed/37993418 http://dx.doi.org/10.1038/s41467-023-43173-7 |
Ejemplares similares
-
Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome
por: Rychel, Kevin, et al.
Publicado: (2020) -
iModulonDB: a knowledgebase of microbial transcriptional regulation derived from machine learning
por: Rychel, Kevin, et al.
Publicado: (2020) -
Survival of the weakest in non-transitive asymmetric interactions among strains of E. coli
por: Liao, Michael J., et al.
Publicado: (2020) -
Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators
por: Rajput, Akanksha, et al.
Publicado: (2022) -
A multi-scale expression and regulation knowledge base for Escherichia coli
por: Lamoureux, Cameron R, et al.
Publicado: (2023)