Cargando…
Possibilistic distribution distance metric: a robust domain adaptation learning method
The affective Brain-Computer Interface (aBCI) systems, which achieve predictions for individual subjects through training on multiple subjects, often cannot achieve satisfactory results due to the differences in Electroencephalogram (EEG) patterns between subjects. One tried to use Subject-specific...
Autores principales: | Tao, Jianwen, Dan, Yufang, Zhou, Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665527/ https://www.ncbi.nlm.nih.gov/pubmed/38027506 http://dx.doi.org/10.3389/fnins.2023.1247082 |
Ejemplares similares
-
Multi-Model Adaptation Learning With Possibilistic Clustering Assumption for EEG-Based Emotion Recognition
por: Dan, Yufang, et al.
Publicado: (2022) -
Possibilistic Clustering-Promoting Semi-Supervised Learning for EEG-Based Emotion Recognition
por: Dan, Yufang, et al.
Publicado: (2021) -
Robust Latent Multi-Source Adaptation for Encephalogram-Based Emotion Recognition
por: Tao, Jianwen, et al.
Publicado: (2022) -
Local domain generalization with low-rank constraint for EEG-based emotion recognition
por: Tao, Jianwen, et al.
Publicado: (2023) -
Possibilistic Estimation of Distributions to Leverage Sparse Data in Machine Learning
por: Tettamanzi, Andrea G. B., et al.
Publicado: (2020)