Cargando…
Biased proportional hazard regression estimator in the existence of collinearity
This paper proposed a new biased proportional hazard regression (PHR) estimator which is the combination of elastic net proportional hazard regression (ENPHR) and principal components proportional hazard regression (PCPHR) estimator. Comparison of proposed estimator with ENPHR, PCPHR, ridge PHR, las...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665663/ https://www.ncbi.nlm.nih.gov/pubmed/38027716 http://dx.doi.org/10.1016/j.heliyon.2023.e21394 |
Sumario: | This paper proposed a new biased proportional hazard regression (PHR) estimator which is the combination of elastic net proportional hazard regression (ENPHR) and principal components proportional hazard regression (PCPHR) estimator. Comparison of proposed estimator with ENPHR, PCPHR, ridge PHR, lasso PHR, [Formula: see text] class PHR and maximum likelihood (ML) estimators is done in terms of scalar mean square error (MSE). Simulation study is conducted to examine the performance of each estimator. Furthermore, the developed estimator is utilized to analyze the infant mortality in Delhi, India. |
---|