Cargando…
Biased proportional hazard regression estimator in the existence of collinearity
This paper proposed a new biased proportional hazard regression (PHR) estimator which is the combination of elastic net proportional hazard regression (ENPHR) and principal components proportional hazard regression (PCPHR) estimator. Comparison of proposed estimator with ENPHR, PCPHR, ridge PHR, las...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665663/ https://www.ncbi.nlm.nih.gov/pubmed/38027716 http://dx.doi.org/10.1016/j.heliyon.2023.e21394 |
_version_ | 1785138875040006144 |
---|---|
author | Sirohi, Anu Alsaedi, Basim S.O. Ahelali, Marwan H. Jayaswal, Mahesh Kumar |
author_facet | Sirohi, Anu Alsaedi, Basim S.O. Ahelali, Marwan H. Jayaswal, Mahesh Kumar |
author_sort | Sirohi, Anu |
collection | PubMed |
description | This paper proposed a new biased proportional hazard regression (PHR) estimator which is the combination of elastic net proportional hazard regression (ENPHR) and principal components proportional hazard regression (PCPHR) estimator. Comparison of proposed estimator with ENPHR, PCPHR, ridge PHR, lasso PHR, [Formula: see text] class PHR and maximum likelihood (ML) estimators is done in terms of scalar mean square error (MSE). Simulation study is conducted to examine the performance of each estimator. Furthermore, the developed estimator is utilized to analyze the infant mortality in Delhi, India. |
format | Online Article Text |
id | pubmed-10665663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106656632023-10-29 Biased proportional hazard regression estimator in the existence of collinearity Sirohi, Anu Alsaedi, Basim S.O. Ahelali, Marwan H. Jayaswal, Mahesh Kumar Heliyon Research Article This paper proposed a new biased proportional hazard regression (PHR) estimator which is the combination of elastic net proportional hazard regression (ENPHR) and principal components proportional hazard regression (PCPHR) estimator. Comparison of proposed estimator with ENPHR, PCPHR, ridge PHR, lasso PHR, [Formula: see text] class PHR and maximum likelihood (ML) estimators is done in terms of scalar mean square error (MSE). Simulation study is conducted to examine the performance of each estimator. Furthermore, the developed estimator is utilized to analyze the infant mortality in Delhi, India. Elsevier 2023-10-29 /pmc/articles/PMC10665663/ /pubmed/38027716 http://dx.doi.org/10.1016/j.heliyon.2023.e21394 Text en © 2023 Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Sirohi, Anu Alsaedi, Basim S.O. Ahelali, Marwan H. Jayaswal, Mahesh Kumar Biased proportional hazard regression estimator in the existence of collinearity |
title | Biased proportional hazard regression estimator in the existence of collinearity |
title_full | Biased proportional hazard regression estimator in the existence of collinearity |
title_fullStr | Biased proportional hazard regression estimator in the existence of collinearity |
title_full_unstemmed | Biased proportional hazard regression estimator in the existence of collinearity |
title_short | Biased proportional hazard regression estimator in the existence of collinearity |
title_sort | biased proportional hazard regression estimator in the existence of collinearity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665663/ https://www.ncbi.nlm.nih.gov/pubmed/38027716 http://dx.doi.org/10.1016/j.heliyon.2023.e21394 |
work_keys_str_mv | AT sirohianu biasedproportionalhazardregressionestimatorintheexistenceofcollinearity AT alsaedibasimso biasedproportionalhazardregressionestimatorintheexistenceofcollinearity AT ahelalimarwanh biasedproportionalhazardregressionestimatorintheexistenceofcollinearity AT jayaswalmaheshkumar biasedproportionalhazardregressionestimatorintheexistenceofcollinearity |